16 TO 50 VOLT INPUT - 20 TO 30 WATT

FEATURES

- Input voltage range 16 to 50 volts
- Transient protection up to 80 volts per MIL-STD-704A
- Operating temperature -55°C to +125°C
- Fully isolated, magnetic feedback
- Fixed high frequency switching
- Inhibit and synchronization function
- · Indefinite short circuit and overload protection
- Soft-start function limits inrush current during start-up

MODELS OUTPUT VOLTAGE (V)						
SINGLE	DUAL					
3.3	±5					
5	±12					
8.5	±15					
12						
15						

LEGACY MTR (40): 16 - 40 Vin, 50 V transient / 50 ms. Datasheet at www.interpoint.com/mtr40

DESCRIPTION

The Interpoint® MTR (50) Series[™] of DC-DC converters offers up to 30 watts of power from single or dual output configurations in a low profile package. The MTR (50) converters are manufactured in our fully certified and qualified MIL-PRF-38534 Class H production facility and packaged in hermetically sealed steel cases. They are ideal for use in programs requiring high reliability, small size, and high efficiency.

The MTR (50) have a wide input voltage range of 16 to 50 volts. Transient protection of up to 80 volts input meets the transient requirements of MIL-STD-704A. The converters operate over the full military temperature range with up to 81% efficiency typical. The converters are offered with standard screening, "ES" screening, or fully compliant to "883" MIL-PRF-38534 Class H screening. See Table 12 on page 28. Standard Microcircuit Drawings (SMD) are available, refer to the cross-reference in Table 3 on page 6.

COVER MARKING

The cover marking for the MTR (50) has "MTR (50) DC-DC CONVERTER" below the model number. Figure 8 on page 6 illustrates the cover marking.

CONVERTER DESIGN

The MTR (50) converters are constant frequency, pulse-width modulated switching regulators which use a quasi-square wave, single ended, forward converter design. Tight load regulation is maintained via wide bandwidth magnetic feedback and, on single output models, through use of remote sense. On dual output models, the positive output is independently regulated and the negative output is cross regulated through the use of tightly coupled magnetics.

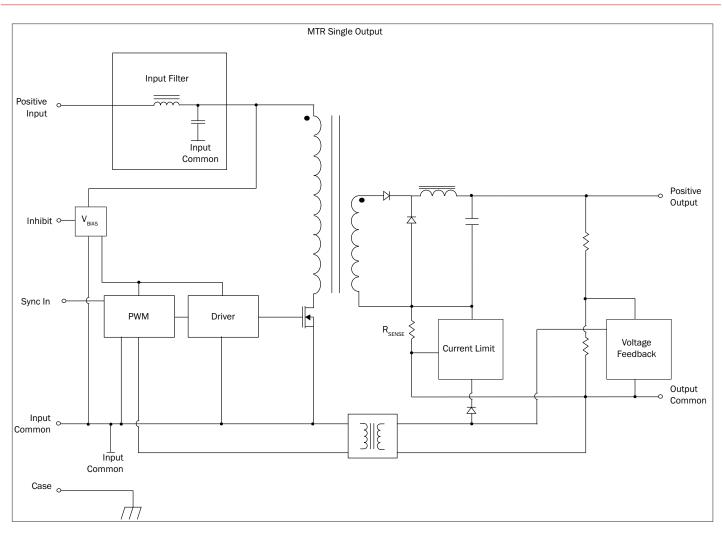
All models include a soft-start function to prevent large current draw and minimize overshoot. Indefinite short circuit protection and overload protection are provided by a constant current-limit feature. This protective system senses current in the converter's secondary stage and limits it to approximately 140% of the maximum rated output current.

MTR (50) converters are provided with internal filtering capacitors that help reduce the need for external components in normal operation. Use our FMCE-0328[™], FMCE-0528[™] or FMCE-0828[™] EMI filter to meet the requirements of MIL-STD-461C CE03 and CS01 and/or MIL-STD-461D, E and F CE102 and CS101 levels of conducted emissions.

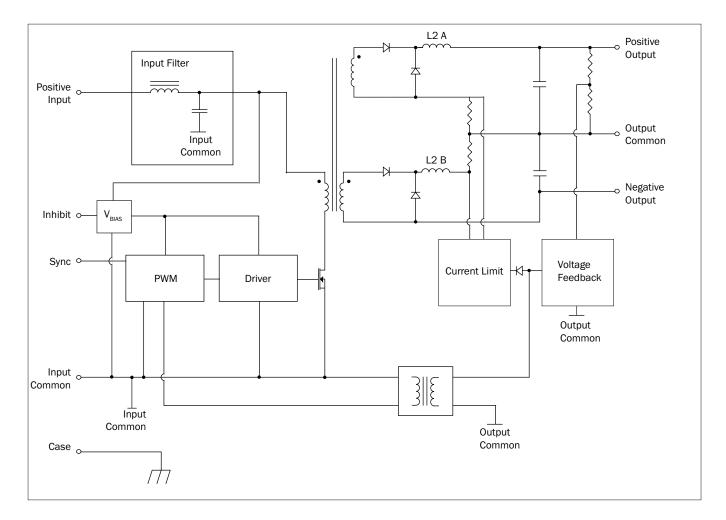
Page 1 of 28 MTR-02 Rev AK - 2021.10.01

16 TO 50 VOLT INPUT - 20 TO 30 WATT

SYNCHRONIZATION


Synchronizing the converter with the system clock allows the designer to confine switching noise to clock transitions, minimizing interference and reducing the need for filtering. In sync mode, the converter will run at any frequency between 500 kHz and 675 kHz. The sync control operates with a duty cycle between 40% and 60%. The sync pin must be connected to input common pin when not in use.

DYNAMIC RESPONSE


The MTR (50) Series feed-forward compensation system provides excellent dynamic response and audio rejection. Audio rejection is typically 40 dB. The minimum to maximum step line transition response is typically less than 4%.

INHIBIT FUNCTION

MTR (50) Series converters provide an inhibit terminal that can be used to disable internal switching, resulting in no output voltage and very low quiescent input current. The converter is inhibited when the inhibit pin is pulled below 0.8 volts and enabled when its inhibit pin is left floating. An external inhibit interface should be capable of pulling the converter's inhibit pin below 0.8 volts while sinking the maximum inhibit current and also allowing the inhibit pin to float high to enable the converter. A voltage should not be applied to the inhibit pin. The open circuit voltage present on the inhibit pin is 9 to 11 volts.

16 TO 50 VOLT INPUT - 20 TO 30 WATT

FIGURE 2: MTR (50) DUAL BLOCK DIAGRAM

16 TO 50 VOLT INPUT - 20 TO 30 WATT

TRIM AND REMOTE SENSE (AVAILABLE ON SINGLE OUTPUT MODELS ONLY)

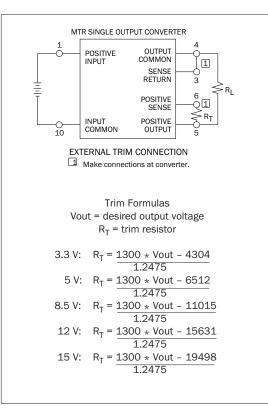


FIGURE 3: TRIM CONNECTION 1, 2, 3

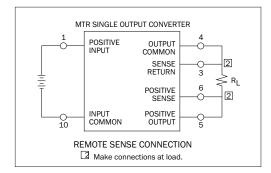
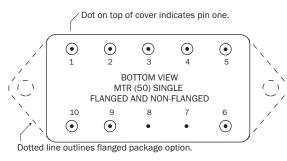


FIGURE 4: REMOTE SENSE CONNECTION ⁴

Notes for Remote Sense and Trim

- 1. When trimming output voltage and/or remote sensing, the total output voltage increase must be less than 0.6 volts at the converters pins. Do not exceed the maximum power.
- 2. If neither voltage trim nor remote sense will be used, connect pin 3 to pin 4 and pin 5 to pin 6.
- 3. CAUTION: The converter will be permanently damaged if the remote sense (pin 6) is shorted to ground. Damage may also result if the output common or positive output is disconnected from the load when the remote sense leads are connected to the load.
- 4. When using remote sense for voltage compensation or when using remote sense for trim, the output will drift over temperature. Contact Applications Engineering for more information at powerapps@craneae.com


16 TO 50 VOLT INPUT - 20 TO 30 WATT

PIN OUT							
Pin	Single Output	Dual Output					
1	Positive Input	Positive Input					
2	Inhibit	Inhibit					
3	Sense Return	Positive Output					
4	Output Common	Output Common					
5	Positive Output	Negative Output					
6	Positive Sense	Case Ground					
7	Case Ground	Case Ground					
8	Case Ground	Case Ground					
9	Sync	Sync					
10	Input Common	Input Common					

TABLE 1: MTR (50) PIN OUT

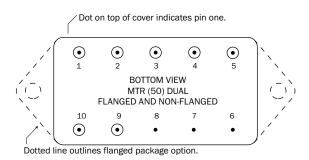

PINS NOT IN USE							
Inhibit	Leave unconnected						
Sync In	Connect to input common						
Sense Lines	Must be connected to appropriate outputs						

TABLE 2: MTR (50) PINS NOT IN USE

For dimensions see Figure 48 on page 26 and Figure 49 on page 27

FIGURE 5: MTR (50) PIN OUT SINGLE OUTPUT MODELS

For dimensions see cases Figure 48 on page 26 and Figure 49 on page 27

FIGURE 6: MTR (50)PIN OUT DUAL OUTPUT MODELS

16 TO 50 VOLT INPUT - 20 TO 30 WATT

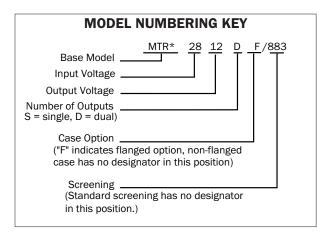


FIGURE 7: MTR (50) MODEL NUMBERING KEY * "INTERPOINT MTR (50) DC-DC CONVERTER" is printed under the model number on the cover

FIGURE 8: COVER MARKING FOR MTR (50) - 50 VIN

SMD NU	MBERS
STANDARD MICROCIRCUIT DRAWING (SMD)	MTR (50) SIMILAR PART
5962-0150103HXC	MTR283R3S/883
5962-9306803HXC	MTR2805S/883
5962-9306903HXC	MTR2812S/883
5962-9307003HXC	MTR2815S/883
5962-9320503HXC	MTR2805D/883
5962-9307103HXC	MTR2812D/883
5962-9307203HXC	MTR2815D/883
SMD numbers shown are for standard case (X), standard p dipped pins (C). For other opt SMD for the SMD number an number. All SMD numbers ar in the "Bulletin" which is the For exact specifications for a the SMD. SMDs can be down	bin seal and non-solder tions please refer to the d the vendor similar e listed on the SMD last page of the SMD. n SMD product, refer to

TABLE 3: MTR (50) SMD NUMBER CROSS REFERENCE

landandmaritimeapps.dla.mil/programs/smcr

MTR (50) MODEL NUMBER OPTIONS To determine the model number enter one option from each category in the form below.								
CATEGORY	Base Model and Input Voltage	Output Voltage ¹	Number of Outputs ²	Case Options ³	Screening ⁴			
		3R3, 05, 8R5, 12, 15	S	(non-flanged, leave blank)	(standard, leave blank)			
OPTIONS	MTR28	05, 12, 15	D	F (flanged)	ES			
					883			
FILL IN FOR MODEL # ⁵	MTR28				/			

Notes for MTR (50) Models

1. Output Voltage: An R indicates a decimal point. 3R3 is 3.3 volts out. The values of 3.3 and 8.5 volts are only available in single output models.

2. Number of Outputs: S is a single output and D is a dual output.

3. Case Options: For the standard case, Figure 48 on page 26, leave the case option blank. For the flanged case option, Figure 49 on page 27, insert the letter F in the Case Option position.

4. Screening: For standard screening leave the screening option blank. For other screening options, insert the desired screening level. For more information see Table 12 on page 28.

5. If ordering by model number add suffix "-Q" to request solder dipped leads (MTR2805S/883-Q).

TABLE 4: MTR (50) MODEL NUMBER OPTIONS

16 TO 50 VOLT INPUT - 20 TO 30 WATT

		A	LL MODE	ELS	
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
LEAD SOLDERING TEMPERATURE ¹	10 SECONDS MAX.		-	300	°C
STORAGE TEMPERATURE ¹		-65	-	+150	°C
CASE OPERATING	FULL POWER	-55	-	+125	°C
TEMPERATURE	ABSOLUTE ¹	-55	_	+135	
DERATING OUTPUT POWER/CURRENT ¹	LINEARLY	From 10	00% at 12	5°C to 09	6 at 135°C
ESD RATING ^{1, 2}	MIL STD 883 METHOD 3015				
MIL-PRF-38534, 3.9.5.8.2	CLASS 3B	_	-	<u>></u> 8000	V
ISOLATION: INPUT TO OUTPUT, INPUT TO	@ 500 VDC AT 25°C	100		_	Megohms
CASE, OUTPUT TO CASE ³		100	_		Megonins
INPUT TO OUTPUT CAPACITANCE ¹		_	50	_	pF
CURRENT LIMIT ⁴	% OF FULL LOAD	_	140	_	%
AUDIO REJECTION ¹		_	40	_	dB
SWITCHING FREQUENCY	-55°C TO +125°C	530	-	670	kHz
SYNCHRONIZATION	INPUT FREQUENCY	500	-	675	kHz
-55°C TO +125°C	DUTY CYCLE 1	40	-	60	%
	ACTIVE LOW		-	0.8	v
	ACTIVE HIGH ¹	4.5	_	5.0	v
	REFERENCED TO		INPUT	COMMON	1
	IF NOT USED	CONNECT TO INPUT COM		OMMON	
INHIBIT ACTIVE LOW (OUTPUT DISABLED)	INHIBIT PIN PULLED LOW		-	0.8	V
Do not apply a voltage to the inhibit pin. 5	INHIBIT PIN SOURCE CURRENT ¹		-	8	mA
	REFERENCED TO		INPUT	COMMON	N
INHIBIT ACTIVE HIGH (OUTPUT ENABLED)	INHIBIT PIN CONDITION		OPEN CO	DLLECTOR	OR
Do not apply a voltage to the inhibit pin. ⁵			UNCO	NNECTED	1
	OPEN INHIBIT PIN VOLTAGE ¹	9	-	11	V

TABLE 5: MTR (50) OPERATING CONDITIONS, ALL MODELS: 25 °C T_C, 28 V_{IN}, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

For mean time between failures (MTBF) contact Applications Engineering at powerapps@craneae.com

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. Passed 8000 volts.

3. When testing isolation, input pins are tied together and output pins are tied together. They are tested against each other and against case. Discharge the pins before and after testing.

4. Dual outputs: The over-current limit will trigger when the sum of the currents from both outputs reaches 140% (typical value) of the maximum rated "total" current of both outputs.

5. An external inhibit interface should be used to pull the inhibit low or leave it floating. The inhibit pin can be left unconnected if not used.

16 TO 50 VOLT INPUT - 20 TO 30 WATT

SINGLE OUTPUT MODELS		М	TR283R	3S	MTR2805S			MTR288R5S			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		3.201	3.30	3.399	4.85	5.00	5.15	8.23	8.5	8.77	V
OUTPUT CURRENT	V _{IN} = 16 TO 50	0	-	6.06	0	_	5.0	0	_	2.94	A
OUTPUT POWER	V _{IN} = 16 TO 50	0	_	20	0	_	25	0	_	25	W
OUTPUT RIPPLE	$T_c = 25 \degree C$	-	10	40	-	15	70	-	15	60	
10 kHZ - 2 MHZ	T _C = -55°C TO +125°C	_	15	50	—	15	90	_	20	60	mV p-p
LINE REGULATION	V _{IN} = 16 TO 50	-	0	10	-	2	50	_	2	50	mV
LOAD REGULATION	NO LOAD TO FULL	_	1	10	—	2	50	_	2	50	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	16	28	50	16	28	50	
NO LOAD TO FULL	TRANSIENT 50 ms ¹	_	-	80	-	_	80	-	-	80	V
INPUT CURRENT	NO LOAD	_	40	80	<u> </u>	50	80	— —	50	80	
	INHIBITED	_	3	8	— —	3	8	— —	3	8	mA
INPUT RIPPLE CURRENT ²	10 kHZ - 10 MHZ	_	30	100	— —	30	100	_	30	100	mA p-p
EFFICIENCY	T _C = 25°C	73	74	_	75	77	_	77	81	_	
	T _C = -55°C TO +125°C	71	74	_	73	76	_	76	79	_	%
LOAD FAULT ^{3, 4}	POWER DISSIPATION	-	8	12	-	8	12	_	6	12	W
SHORT CIRCUIT	RECOVERY 1	_	1.4	6	—	1.4	5	_	1.4	5	ms
STEP LOAD RESPONSE 4, 5	TRANSIENT	_	±80	±250	-	±100	±300	_	±150	±400	mV pk
50% - 100% - 50%	RECOVERY	_	50	200	_	50	200	_	30	200	μs
STEP LINE RESPONSE 1, 4, 6	TRANSIENT	-	_	±300	- 1	±200	±300	_	±400	±500	mV pk
V _{IN} = 16 - 40 - 16	RECOVERY	_	_	400	— —	_	400	_	_	400	μs
START-UP ^{4, 7}	DELAY	-	2.5	5	- I	2.5	5	-	2.5	5	ms
FULL LOAD	OVERSHOOT	_	0	50	— —	0	80	_	0	150	mV pk
CAPACITIVE LOAD ¹	NO EFFECT ON DC			0000			0000			0000	_
	PERFORMANCE	_	_	3000	_	_	3000	_	-	3000	μF

TABLE 6: MTR (50) ELECTRICAL CHARACTERISTICS -55°C TO +125°C CASE, 28 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

- 1. Guaranteed by characterization test and/or analysis. Not a production test.
- 2. Tested with 6800 pF ceramic bypass capacitor connected externally from input

common to case.

3. Indefinite short circuit protection not guaranteed above 125°C case.

4. Recovery time is measured from application of the transient to point at which $\rm V_{OUT}$ is within 1% of final value.

5. Step load transition test is performed at 50 μ s ±10 μ s.

6. Step line characterization test is performed at 100 μ s ± 20 μ s.

7. Tested on release from inhibit.

SINGLE OUTPUT MODELS		N	MTR2812S		MTR2815S			
PARAMETER CONDITIONS I		MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		11.64	12.00	12.36	14.55	15.00	15.45	V
OUTPUT CURRENT	V _{IN} = 16 TO 50	0	-	2.5	0	_	2.0	A
OUTPUT POWER	V _{IN} = 16 TO 50	0	-	30	0	_	30	W
OUTPUT RIPPLE	$T_{\rm C} = 25^{\circ}{\rm C}$	-	10	40	—	10	40	
10 kHz - 2 MHz	T _C = -55°C TO +125°C	-	15	90	—	15	90	mV p-p
LINE REGULATION	V _{IN} = 16 TO 50	—	2	50	_	2	50	mV
LOAD REGULATION	NO LOAD TO FULL	-	2	50	_	2	50	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	16	28	50	V
NO LOAD TO FULL	TRANSIENT 50 ms ¹	-	-	80	_	-	80	v
INPUT CURRENT	NO LOAD	— —	50	80	_	50	80	
	INHIBITED	-	3	8	_	3	8	mA
INPUT RIPPLE CURRENT ²	10 kHz - 10 MHz	-	35	100	_	35	100	mA p-p
EFFICIENCY	$T_{\rm C} = 25^{\circ}{\rm C}$	77	80	-	79	80	-	0/
	T _C = -55°C TO +125°C	75	77	-	75	77	-	%
LOAD FAULT ^{3, 4}	POWER DISSIPATION	- 1	6	12	_	5	12	W
SHORT CIRCUIT	RECOVERY 1	-	1.4	5	—	1.4	5	ms
STEP LOAD RESPONSE 4, 5	TRANSIENT	-	±150	±400	_	±150	±500	mV pk
50% - 100% - 50%	RECOVERY	_	30	200	_	30	200	μs
STEP LINE RESPONSE 1, 4, 6	TRANSIENT	-	±400	±500	—	±500	±600	mV pk
V _{IN} = 16 - 40 - 16	RECOVERY	-	-	400	_	_	400	μs
START-UP ^{4, 7}	DELAY	-	2.5	5	—	2.5	5	ms
FULL LOAD	OVERSHOOT	-	0	180	—	0	180	mV pk
CAPACITIVE LOAD ¹	NO EFFECT ON DC PERFORMANCE	_	_	3000	_	_	3000	μF

TABLE 7: MTR (50) ELECTRICAL CHARACTERISTICS -55°C TO +125°C CASE, 28 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

- 1. Guaranteed by characterization test and/or analysis. Not a production test.
- 2. Tested with 6800 pF ceramic bypass capacitor connected externally from input common to case.

3. Indefinite short circuit protection not guaranteed above $125\,^{\circ}\text{C}$ case.

4. Recovery time is measured from application of the transient to point at which $\mathrm{V}_{\mathrm{OUT}}$ is within 1% of final value.

5. Step load transition test is performed at 50 μs ±10 $\mu s.$

6. Step line characterization test is performed at 100 μs ± 20 $\mu s.$

7. Tested on release from inhibit.

16 TO 50 VOLT INPUT - 20 TO 30 WATT

DUAL OUTPUT MODELS		N	1TR2805	5D	N	ITR2812	D	N	ITR2815	D	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	+ V _{OUT}	4.850	5.00	5.150	11.64	12.00	12.36	14.55	15.00	15.45	v
	- V _{OUT}	4.825	5.00	5.172	11.58	12.00	12.42	14.47	15.00	15.53	v
OUTPUT CURRENT ²	EITHER OUTPUT	0	2.5	4.5 ¹	0	1.25	2.25 ¹	0	1.00	1.80 ¹	
V _{IN} = 16 TO 50	TOTAL OUTPUT	_	-	5	_	-	2.5	_	_	2.00	A
OUTPUT POWER ²	EITHER OUTPUT	0	12.5	22.5 ¹	0	15	27 ¹	0	15	27 ¹	
V _{IN} = 16 TO 50	TOTAL OUTPUT	_	-	25	_	-	30	_	_	30	W
OUTPUT RIPPLE	T _C = 25°C	- I	5	40	_	20	80	_	20	80	
10 kHz - 2 MHz ± V _{OUT}	T _C = -55°C TO +125°C	<u> </u>	10	90	_	30	120	_	20	120	mV p-p
LINE REGULATION	+ V _{OUT}	_	2	50	_	2	50	_	2	50	
V _{IN} = 16 to 50	- V _{OUT}	-	5	100	_	20	150	_	40	180	mV
LOAD REGULATION	+ V _{OUT}	<u> </u>	2	50	_	2	50	_	2	50	
NO LOAD TO FULL	- V _{OUT}	<u> </u>	10	100	_	20	150	_	20	180	mV
CROSS REGULATION ¹	SEE NOTE 3	<u> </u>	6	10	_	3	6	_	3	6	
EFFECT ON -V _{OUT} , 25°C	SEE NOTE 4	_	9	14	_	5	9	_	6	9	%
INPUT VOLTAGE	CONTINUOUS	16	28	50	16	28	50	16	28	50	
NO LOAD TO FULL	TRANSIENT 50 ms ¹	_	_	80	_	_	80	_	_	80	V
INPUT CURRENT	NO LOAD	<u> </u>	50	90	_	60	90	_	60	90	
	INHIBITED	<u> </u>	3	8	_	3	8	_	3	8	mA
INPUT RIPPLE CURRENT 5	10 kHz - 10 MHz	_	25	100	_	30	100	_	30	100	mA p-p
EFFICIENCY	T _C = 25°C	76	79	_	76	80	_	78	80	_	
BALANCED LOAD	T _C = -55°C TO +125°C	73	78	_	74	77	_	75	77	_	%
LOAD FAULT ^{6, 7}	POWER DISSIPATION	<u> </u>	7	12	_	5	12	_	5	12	W
SHORT CIRCUIT	RECOVERY 1	-	1.4	5.0	_	1.4	5.0	—	1.4	5.0	ms
STEP LOAD RESPONSE 7, 8	TRANSIENT	_	±80	±300	_	±130	±300	_	±120	±400	mV pk
50% - 100% - 50%	RECOVERY		70	200		10	200		10	200	μs
STEP LINE RESPONSE 1, 7, 9	TRANSIENT		±200	±400		±200	±400		±400	±500	mV pk
$V_{\rm IN} = 16 - 40 - 16, \pm V_{\rm OUT}$	RECOVERY		_	400	_	_	400	_	_	400	μs
START-UP 7, 10	DELAY		2.5	5		2.5	5		2.5	5	ms
FULL LOAD	OVERSHOOT		0	180		0	180		0	180	mV pk
CAPACITIVE LOAD 1, 11	NO EFFECT ON DC		_	1500	_	_	1500	_	_	1500	μF
	PERFORMANCE			1000			1000			1000	, MI

TABLE 8: MTR (50) ELECTRICAL CHARACTERISTICS -55°C TO +125°C CASE, 28 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. Up to 90% of the total output current/power is available from either output providing the opposite output is carrying at least 10% of the total output power.

3. Effect on negative V_{OUT} from 50%/50% loads to 80%/20% or 20%/80% loads. 4. Effect on negative V_{OUT} from 50%/50% loads to 90%/10% or 10%/90% loads. See Figure 24 on page 18.

5. Tested with $6800\ \text{pF}$ ceramic bypass capacitor connected externally from input common to case.

6. Indefinite short circuit protection not guaranteed above 125°C case.

7. Recovery time is measured from application of the transient to point at which $\rm V_{OUT}$ is within 1% of final value.

8. Step load transition test is performed at 50 μs ±10 $\mu s.$

9. Step line characterization test is performed at 100 μ S ± 20 μ S.

10. Tested on release from inhibit.

11. Applies to each output.

16 TO 50 VOLT INPUT - 20 TO 30 WATT

TABLE 9: MTR (50) ELECTRICAL CHARACTERISTICS -55°C TO +125°C CASE, 42 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

		A	LL MODI	ELS	
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
LEAD SOLDERING TEMPERATURE ¹	10 SECONDS MAX.		-	300	°C
STORAGE TEMPERATURE ¹		-65	-	+150	°C
CASE OPERATING	FULL POWER	-55	-	+125	°C
TEMPERATURE	ABSOLUTE ¹	-55	-	+135	Ű
DERATING OUTPUT POWER/CURRENT ¹	LINEARLY	From 10	00% at 12	25°C to 09	6 at 135°C
ESD RATING ^{1, 2}	MIL STD 883 METHOD 3015		_	>8000	v
MIL-PRF-38534, 3.9.5.8.2	CLASS 3B			20000	v
ISOLATION: INPUT TO OUTPUT, INPUT TO	@ 500 VDC AT 25°C	100	_	_	Megohms
CASE, OUTPUT TO CASE ³		100			inegenne
INPUT TO OUTPUT CAPACITANCE ¹		-	50	-	pF
CURRENT LIMIT ⁴	% OF FULL LOAD	_	140	_	%
AUDIO REJECTION ¹		_	40	_	dB
SWITCHING FREQUENCY	-55°C TO +125°C	530	-	670	kHz
SYNCHRONIZATION	INPUT FREQUENCY	500	-	675	kHz
-55°C TO +125°C	DUTY CYCLE 1	40	-	60	%
	ACTIVE LOW		-	0.8	v
	ACTIVE HIGH ¹	4.5	-	5.0	, v
	REFERENCED TO		INPU		N
	IF NOT USED	CONNECT TO INPUT CO		OMMON	
INHIBIT ACTIVE LOW (OUTPUT DISABLED)	INHIBIT PIN PULLED LOW		-	0.8	V
Do not apply a voltage to the inhibit pin. 5	INHIBIT PIN SOURCE CURRENT ¹		-	8	mA
	REFERENCED TO		INPU		N
INHIBIT ACTIVE HIGH (OUTPUT ENABLED)	INHIBIT PIN CONDITION	OPEN COLLECTOR OR			OR
Do not apply a voltage to the inhibit pin. ⁵			UNCO	ONNECTED)
	OPEN INHIBIT PIN VOLTAGE ¹	9	_	11	V

For mean time between failures (MTBF) contact Applications Engineering at powerapps@craneae.com

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. Passed 8000 volts.

3. When testing isolation, input pins are tied together and output pins are tied together. They are tested against each other and against case. Discharge the pins before and after testing.

4. Dual outputs: The over-current limit will trigger when the sum of the currents from both outputs reaches 140% (typical value) of the maximum rated "total" current of both outputs.

5. An external inhibit interface should be used to pull the inhibit low or leave it floating. The inhibit pin can be left unconnected if not used.

16 TO 50 VOLT INPUT - 20 TO 30 WATT

TABLE 10: MTR (50)	ELECTRICAL CHARACTERISTICS	-55°C to +125°C case,	42 VIN, 100% LOAD, UNLI	ESS OTHERWISE SPECIFIED.

SINGLE OUTPUT MODELS		MTR2805S		MTR2812S			MTR2815S				
PARAMETER ¹	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		4.85	5.00	5.15	11.64	12.00	12.36	14.55	15.00	15.45	V
OUTPUT CURRENT	V _{IN} = 16 TO 50	0	-	5.0	0	-	2.5	0	-	2.0	A
OUTPUT POWER	V _{IN} = 16 TO 50	0	-	25	0	-	30	0	-	30	W
OUTPUT RIPPLE	$T_c = 25 \degree C$	-	15	70	—	10	40	—	10	40	
10 kHz - 2 MHz	T _C = -55°C TO +125°C	-	15	90	-	15	90	-	15	90	mV p-p
LINE REGULATION	V _{IN} = 16 TO 50	-	2	50	—	2	50	—	2	50	mV
LOAD REGULATION	NO LOAD TO FULL	-	2	50	-	2	50	—	2	50	mV
INPUT VOLTAGE	CONTINUOUS	16	42	50	16	42	50	16	42	50	v
NO LOAD TO FULL	TRANSIENT 50 ms ¹	-	-	80	_	-	80	_	-	80	V
INPUT CURRENT	NO LOAD	-	50	80	_	50	80	_	50	80	
	INHIBITED	-	3	8	_	3	8	-	3	8	mA
INPUT RIPPLE CURRENT ²	10 kHz - 10 MHz	-	45	120	-	55	120	-	55	120	mA p-p
EFFICIENCY	$T_{\rm C} = 25 ^{\circ}{\rm C}$	74	76	-	74	76	_	74	76	-	%
	T _C = -55°C TO +125°C	72	75	-	70	72	_	70	72	-	%
LOAD FAULT ³	POWER DISSIPATION	-	11	13	_	10	12	_	9	12	W
SHORT CIRCUIT	RECOVERY ¹	-	1.4	5	_	1.4	5	_	1.4	5	ms
STEP LOAD RESPONSE 4, 5	TRANSIENT	-	±100	±300	_	±150	±400	-	±150	±500	mV pk
50% - 100% - 50%	RECOVERY	-	50	200	_	30	200	_	30	200	μs
STEP LINE RESPONSE 1, 4, 6	TRANSIENT	-	±200	±300	_	±400	±500	—	±500	±600	mV pk
V _{IN} = 16 - 40 - 16	RECOVERY	-	_	400	_	_	400	-	-	400	μs
START-UP 7	DELAY	-	2.5	5	_	2.5	5	_	2.5	5	ms
FULL LOAD	OVERSHOOT ¹	-	0	80	_	0	180	_	0	180	mV pk
CAPACITIVE LOAD ¹	NO EFFECT ON DC PERFORMANCE	_	_	3000	_	_	3000	_	_	3000	μF

Notes

- 1. Guaranteed by characterization test and/or analysis. Not a production test.
- 2. Tested with 6800 pF ceramic bypass capacitor connected externally from input

common to case.

3. Indefinite short circuit protection not guaranteed above 125 °C case.

4. Recovery time is measured from application of the transient to point at which $\rm V_{OUT}$ is within 1% of final value.

5. Step load transition test is performed at 50 μ s ±10 μ s.

6. Step line characterization test is performed at 100 μs ± 20 $\mu s.$

7. Tested on release from inhibit.

DUAL OUTPUT MODELS		N	MTR2812D			MTR2815D			
PARAMETER ¹	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS	
OUTPUT VOLTAGE	+ V _{OUT}	11.64	12.00	12.36	14.55	15.00	15.45	v	
	- V _{OUT}	11.58	12.00	12.42	14.47	15.00	15.53		
OUTPUT CURRENT ²	EITHER OUTPUT	0	1.25	2.25 ¹	0	1.00	1.80 ¹	A	
V _{IN} = 16 TO 50	TOTAL OUTPUT	-	-	2.5	_	_	2.00		
OUTPUT POWER ²	EITHER OUTPUT	0	15	27 ¹	0	15	27 ¹	- w	
V _{IN} = 16 TO 50	TOTAL OUTPUT	-	-	30	_	_	30		
OUTPUT RIPPLE	T _C = 25°C	-	20	80	_	20	80	- mV p-p	
10 kHz - 2 MHz, ± V _{OUT}	T _C = -55°C TO +125°C	-	30	120	-	20	120		
LINE REGULATION	+ V _{OUT}	-	2	50	_	2	50		
V _{IN} = 16 то 50	- V _{OUT}	-	20	150	_	40	180	mV	
LOAD REGULATION	+ V _{OUT}	-	2	50	_	2	50		
NO LOAD TO FULL	- V _{OUT}	-	20	150	_	20	180	- mV	
CROSS REGULATION	SEE NOTE 3	- 1	4	7	_	4	7	- %	
EFFECT ON -V _{OUT} , 25°C	SEE NOTE 4	- 1	7	9	_	8	10		
INPUT VOLTAGE	CONTINUOUS	16	42	50	16	42	50		
NO LOAD TO FULL	TRANSIENT 50 ms ¹	- 1	_	80	_	_	80	- V	
INPUT CURRENT	NO LOAD	-	60	90	_	60	90		
	INHIBITED		3	8	_	3	8	mA	
INPUT RIPPLE CURRENT 5	10 kHz - 10 MHz	-	45	120	_	45	120	mA p-p	
EFFICIENCY	T _C = 25°C	73	76	-	74	76	_	0/	
BALANCED LOAD	T _C = -55°C TO +125°C	70	72	_	70	72	_	%	
LOAD FAULT ⁶	POWER DISSIPATION	-	8	12	_	7	12	W	
SHORT CIRCUIT	RECOVERY ¹	-	1.4	5.0	_	1.4	5.0	ms	
STEP LOAD RESPONSE 7, 8	TRANSIENT	-	±130	±300	—	±120	±400	mV pk	
50% - 100% - 50% ± V _{OUT}	RECOVERY		10	200		10	200	μs	
STEP LINE RESPONSE ^{1, 9}	TRANSIENT		±200	±400		±400	±500	mV pk	
$V_{IN} = 16 - 40 - 16, \pm V_{OUT}$	RECOVERY		-	400		_	400	μs	
START-UP ¹⁰	DELAY		2.5	5		2.5	5	ms	
FULL LOAD	OVERSHOOT ¹		0	180		0	180	mV pk	
CAPACITIVE LOAD 1, ¹¹	NO EFFECT ON DC PERFORMANCE	-	-	1500	_	_	1500	μF	

TABLE 11: MTR (50) ELECTRICAL CHARACTERISTICS -55°C TO +125°C CASE, 42 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. Up to 90% of the total output current/power is available from either output providing the opposite output is carrying at least 10% of the total output power.

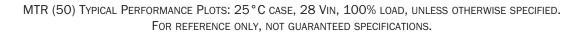
3. Effect on negative V_{OUT} from 50%/50% loads to 80%/20% or 20%/80% loads. 4. Effect on negative V_{OUT} from 50%/50% loads to 90%/10% or 10%/90% loads. See Figure 24 on page 18.

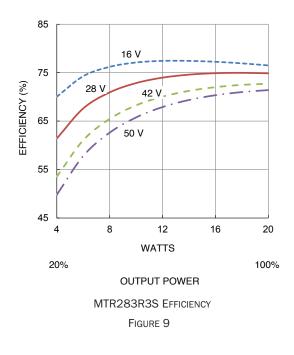
5. Tested with 6800 pF ceramic bypass capacitor connected externally from input common to case.

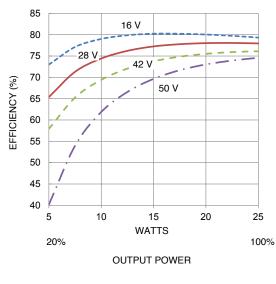
6. Indefinite short circuit protection not guaranteed above 125°C case.

7. Recovery time is measured from application of the transient to point at which $\rm V_{OUT}$ is within 1% of final value.

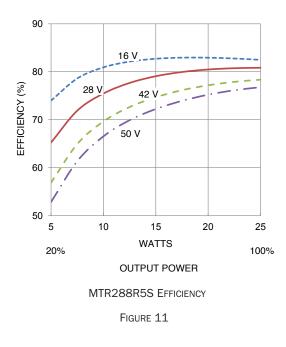
8. Step load transition test is performed at 50 μs ±10 $\mu\text{s}.$

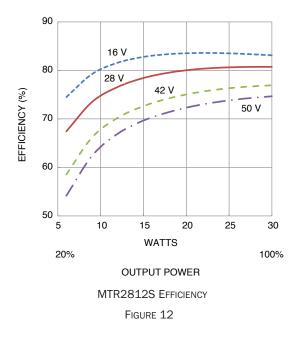

9. Step line characterization test is performed at 100 μ S ± 20 μ S.

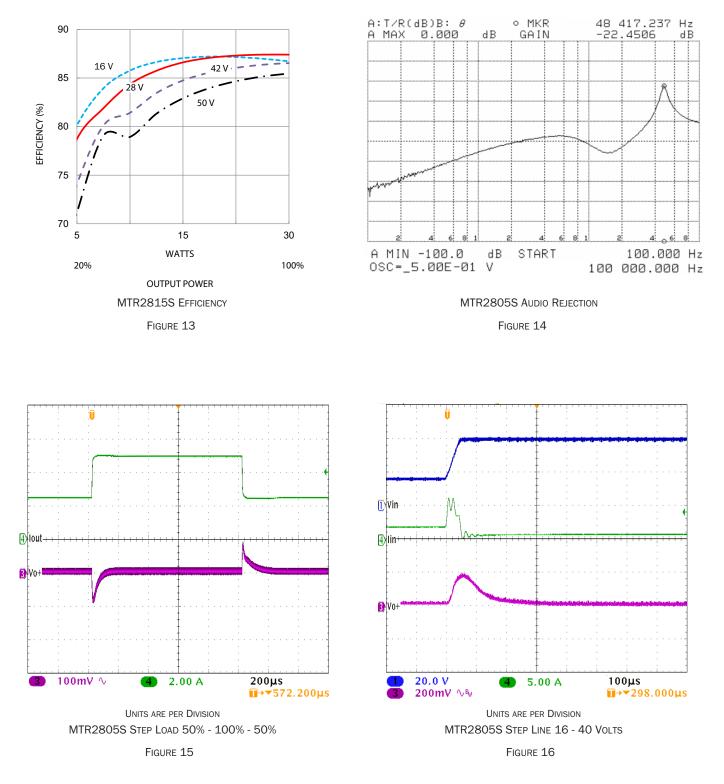

10. Tested on release from inhibit.

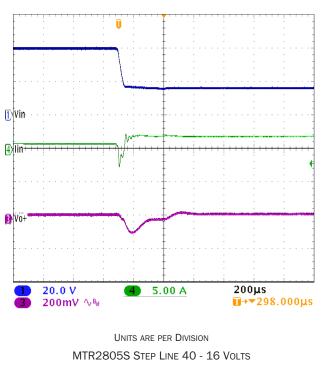

11. Applies to each output.

42 volt specifications are for reference only and are not guaranteed.


16 TO 50 VOLT INPUT - 20 TO 30 WATT

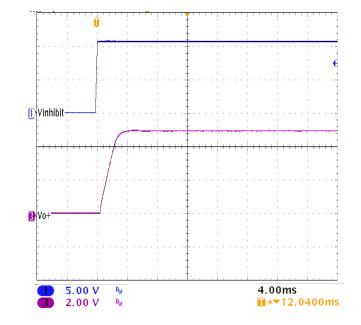



MTR2805S EFFICIENCY FIGURE 10

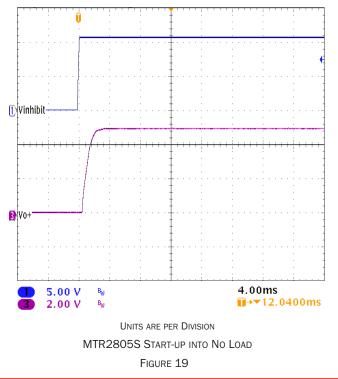


16 TO 50 VOLT INPUT - 20 TO 30 WATT

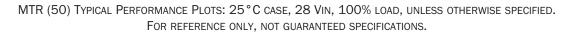
MTR (50) Typical Performance Plots: 25 °C case, 28 Vin, 100% load, unless otherwise specified. For reference only, not guaranteed specifications.

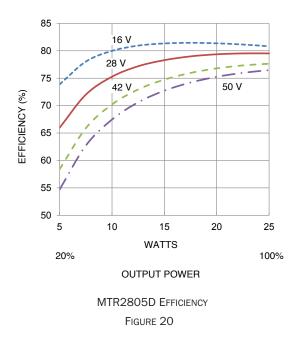


16 TO 50 VOLT INPUT - 20 TO 30 WATT



MTR (50) Typical Performance Plots: 25 °C case, 28 Vin, 100% load, unless otherwise specified. For reference only, not guaranteed specifications.


FIGURE 17



Units are per Division MTR2805S Start-up into No Load, 3000 μF Cap Load Figure 18

16 TO 50 VOLT INPUT - 20 TO 30 WATT

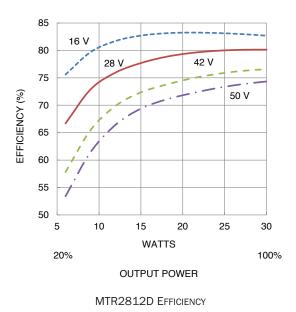
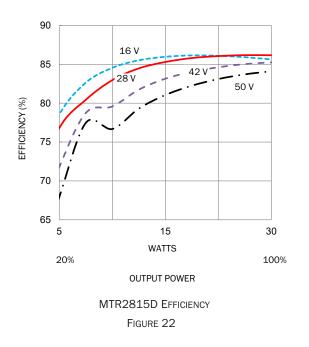
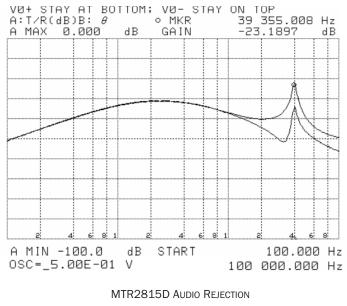
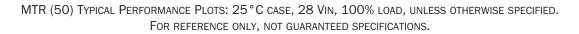
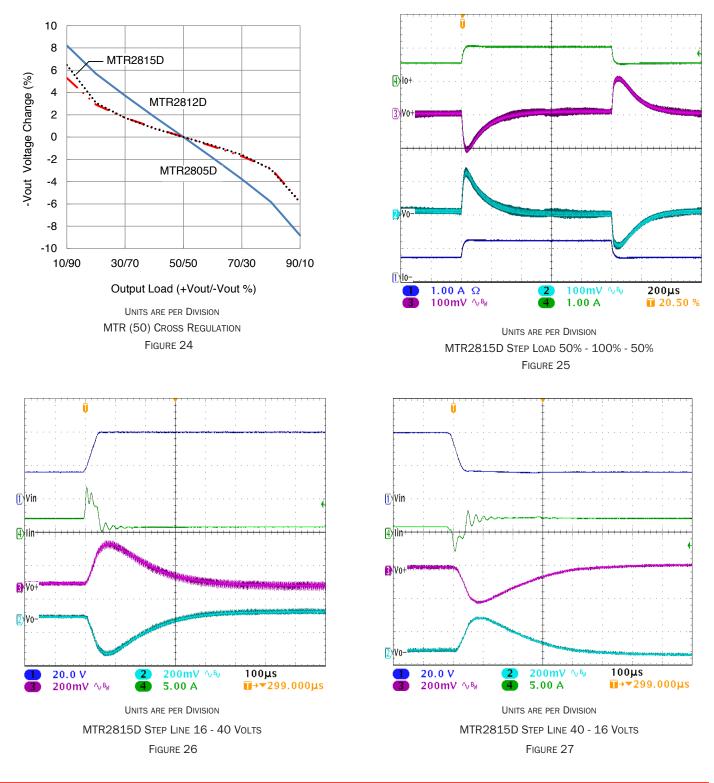
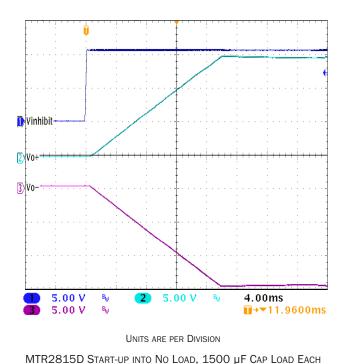



FIGURE 21


FIGURE 23

16 TO 50 VOLT INPUT - 20 TO 30 WATT

16 TO 50 VOLT INPUT - 20 TO 30 WATT

MTR (50) Typical Performance Plots: 25 °C case, 28 Vin, 100% load, unless otherwise specified. For reference only, not guaranteed specifications.

∏√Vinhibit

2 Vo+

3 Vo

5.00 V

5.00 V

BW

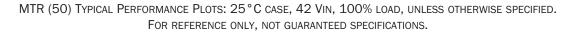
BW

Î

UNITS ARE PER DIVISION MTR2815D START-UP INTO NO LOAD

5.00 V

2


4.00ms

∎→▼12.0400ms

FIGURE 28

FIGURE 29

16 TO 50 VOLT INPUT - 20 TO 30 WATT

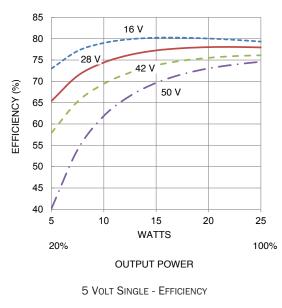
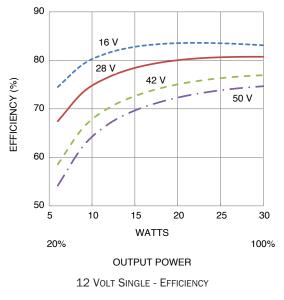
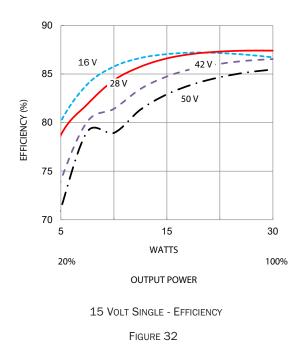
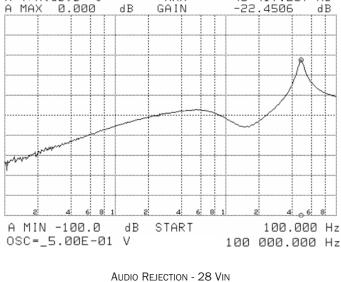


FIGURE 30


FIGURE 31

• MKR

48 417.237 Hz

A∶T∕R(dB)B: θ

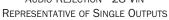
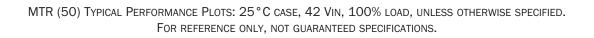
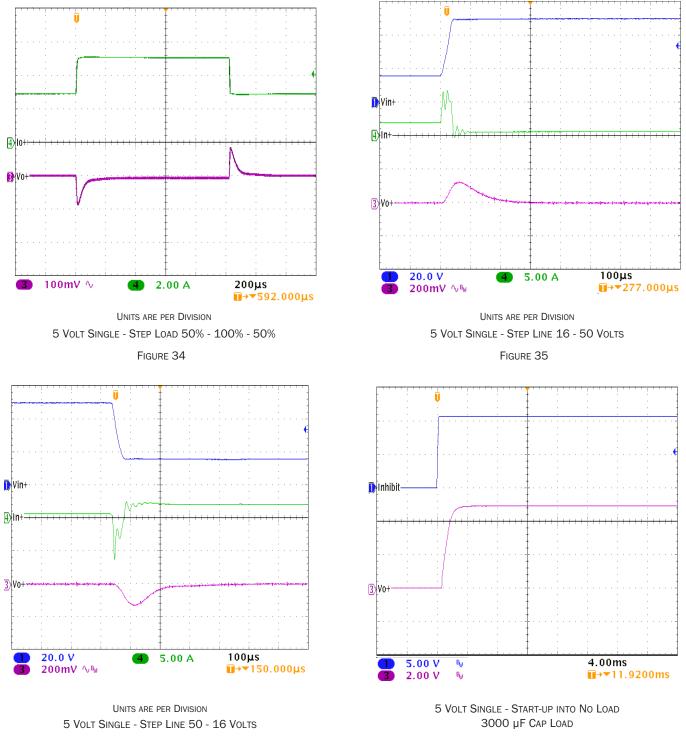
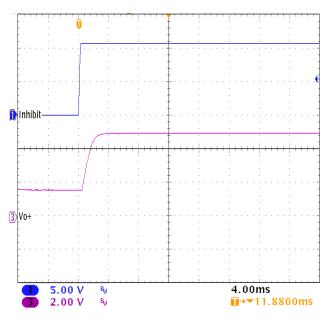
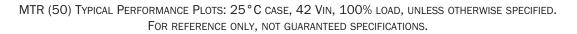
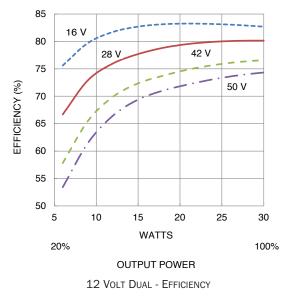




FIGURE 33

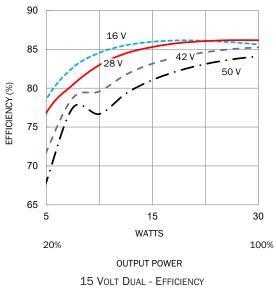

16 TO 50 VOLT INPUT - 20 TO 30 WATT

16 TO 50 VOLT INPUT - 20 TO 30 WATT

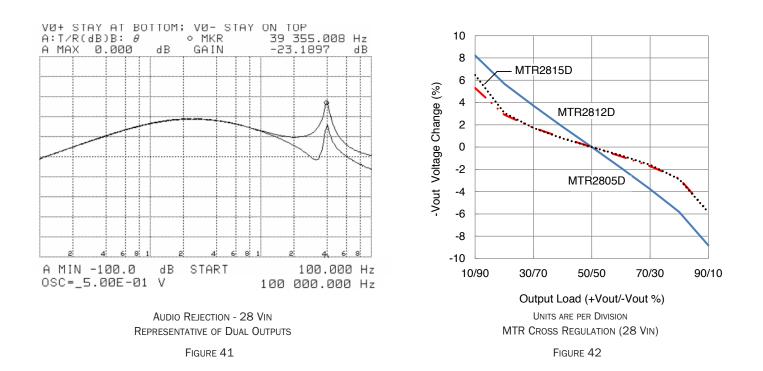

MTR (50) Typical Performance Plots: 25 °C case, 42 Vin, 100% load, unless otherwise specified. For reference only, not guaranteed specifications.

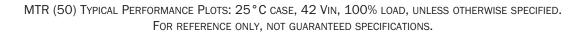


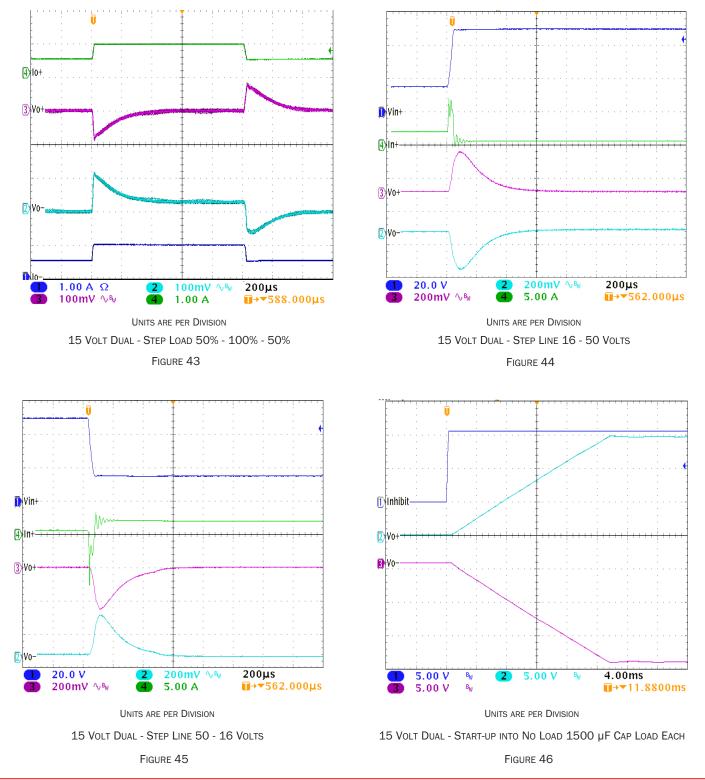
5 VOLT SINGLE - START-UP INTO NO LOAD


FIGURE 38

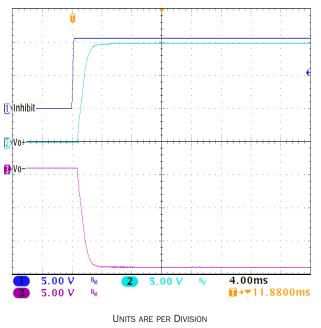
16 TO 50 VOLT INPUT - 20 TO 30 WATT





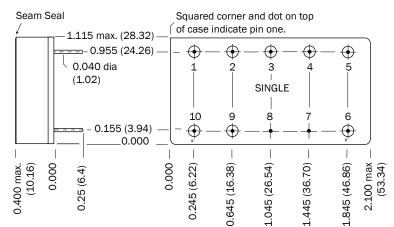


16 TO 50 VOLT INPUT - 20 TO 30 WATT



www.craneae.com/interpoint

16 TO 50 VOLT INPUT - 20 TO 30 WATT


MTR (50) Typical Performance Plots: 25 °C case, 42 Vin, 100% load, unless otherwise specified. For reference only, not guaranteed specifications.

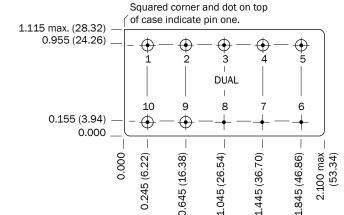

15 VOLT DUAL - START-UP INTO NO LOAD

FIGURE 47

16 TO 50 VOLT INPUT - 20 TO 30 WATT

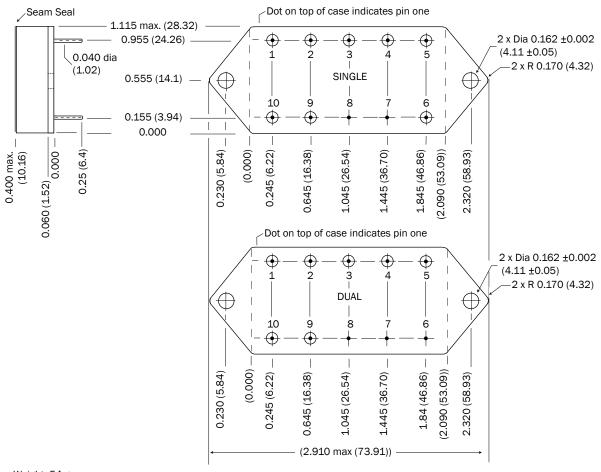
BOTTOM VIEW MTR SINGLE AND DUAL

Weight: 50 grams

Case dimensions in inches (mm) Tolerance ± 0.005 (0.13) for three decimal places ± 0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300° C for 10 seconds per pin.


Materials

Header	Cold Rolled Steel/Nickel/Gold
Cover	Kovar/Nickel
Pins	#52 alloy/Gold ceramic seal
	Gold plating of 50 - 150 microinches included in pin diameter
	Seal hole 0.120 ±0.002 (3.05 ± 0.05)

Please refer to the numerical dimensions for accuracy.

FIGURE 48: MTR (50) CASE H2

16 TO 50 VOLT INPUT - 20 TO 30 WATT

BUI IOM VIEW MIR (50) SINGLE AND DUAL FLANGED Flanged cases: Designator "F" required in Case Option position of model number.

Weight: 54 grams

Case dimensions in inches (mm) Tolerance ± 0.005 (0.13) for three decimal places ± 0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header	Cold Rolled Steel/Nickel/Gold
Cover	Kovar/Nickel
Pins	#52 alloy/Gold, ceramic seal
	Gold plating of 50 - 150 microinches included in pin diameter
	Seal hole 0.120 ±0.002 (3.04 ±0.05)

Please refer to the numerical dimensions for accuracy.

FIGURE 49: MTR (50) CASE K3

16 TO 50 VOLT INPUT - 20 TO 30 WATT

ELEMENT EVALUATION TABLES FOR QML PRODUCTS ARE IN "APP-009 QUALITY AND CERTIFICATION", APPENDIX A, IN COMPLIANCE WITH MIL-PRF-38534 REVISION L. (LINK HTTPS://WWW.CRANEAE.COM/QUALITY-ASSURANCE-MODULAR-POWER)

Environmental Screening High Reliability Standard, /ES and /883 (Class H)

	NON-QIV		CLASS H QML ²		
TEST PERFORMED	STANDARD	/ES	/883 CH ³	/883 QML ⁴	
Pre-cap Inspection, Method 2017, 2032					
Temperature Cycle (10 times)					
Method 1010, Cond. C, -65°C to +150°C, ambient					
Method 1010, Cond. B, -55°C to +125°C, ambient					
Constant Acceleration					
Method 2001, 3000 g					
Method 2001, 500 g					
PIND, Test Method 2020, Cond. A			∎ 5	5	
Burn-in Method 1015, +125°C case, typical ⁶					
96 hours					
160 hours					
Final Electrical Test, MIL-PRF-38534, Group A,					
Subgroups 1 through 6, -55°C, +25°C, +125°C case					
Subgroups 1 and 4, +25°C case					
Hermeticity Test, Method 1014					
Gross Leak, Cond. C ₁ , fluorocarbon					
Fine Leak, Cond. A ₂ , helium					
Gross Leak, Dip					
Final visual inspection, Method 2009					

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes

1. Non-QML products may not meet all of the requirements of MIL-PRF-38534.

2. All processes are QML qualified and performed by certified operators.

3. Class H QML products with no SMD number are marked "CH" per MIL-PRF-38534, 3.9.5.8.3, Table III.

4. Class H QML products have an SMD number

5. Not required by DLA but performed to assure product quality.

6. Burn-in temperature designed to bring the case temperature to +125 °C minimum. Burn-in is a powered test.

TABLE 12: ENVIRONMENTAL SCREENING HIGH RELIABILITY STANDARD, /ES AND /883 (CLASS H)

