17 TO 40 VOLT INPUT - 20 TO 30 WATT

FEATURES

- EMI input filter, up to 50 dB attenuation
- High frequency output filter
- -55°C to +125°C operation
- 17 to 40 volt input
- Up to 50 volts for 50 ms transient protection
- Fully isolated, magnetic feedback
- Fixed high frequency switching
- Trim and remote sense on singles
- Inhibit and synchronization functions
- · Indefinite short circuit protection
- · High power density, up to 83% efficiency

DESCRIPTION

The Interpoint® FMTR-461 Series[™] of DC-DC converters offers up to 30 watts of power in a low profile package. The FMTR converters are manufactured in our fully certified and qualified MIL-PRF-38534 Class H production facility and packaged in hermetically sealed steel cases. They are ideal for use in programs requiring high reliability, small size, and high efficiency. The FMTR Series[™] of DC-DC converters offers up to 30 watts of output power from single or dual output configurations. They operate over the full military temperature range with up to 83% efficiency. FMTR converters are packaged in hermetically sealed metal cases, making them ideal for use in military, aerospace and other high reliability applications.

CONVERTER DESIGN

The FMTR converters are constant frequency, pulse-width modulated switching regulators which use a quasi-square wave, single ended, forward converter design. Tight load regulation is maintained via wide bandwidth magnetic feedback and, on single output models, through use of remote sense. Indefinite short circuit protection and overload protection are provided by a constant current-limit feature. This protective system senses current in the converter's secondary stage and limits it to approximately 115% of the maximum rated output current.

BUILT-IN FILTERS

The built-in input and output filters reduce layout issues and conserve board space. The 2.7 amp EMI input filter meets MIL-STD-461C, CE03 and allows filtering of additional converters through the filter output pins. The output filter reduces high frequency common and differential mode noise. It allows a higher bandwidth ripple voltage measurement and eliminates the need for external output decoupling capacitors.

WARNING: REQUIRED DAMPING NETWORK

To prevent damage to the internal circuitry an external capacitor and resistor are required across the filter outputs (pins 3 and 4) as shown in Figure 1. This applies to both single and dual output models. The recommended capacitor type is wet tantalum, MIL-C-39006.

Page 1 of 12 FMTR Rev AC - 2020.03.31

FMTR SINGLE OUTPUT CONVERTER

REMOTE SENSE CONNECTION
2 Make connections at load.

FIGURE 3: REMOTE SENSE 1, 2, 3

OUTPUT

SENSE

SENSE

POSITIVE

OUTPUT

RETURN

COMMON

10

-0-9

12

11

2

≥RL

2

8

7

+VIN

INPUT

COMMON

FMTR Single and Dual EMI Filtered DC-DC Converters

17 TO 40 VOLT INPUT - 20 TO 30 WATT

FIGURE 1: FMTR TYPICAL INPUT INTERFACE APPLIES TO SINGLES AND DUALS (SHOWN WITH SINGLE OUTPUT)

TRIM AND REMOTE SENSE (AVAILABLE ON SINGLE OUTPUT MODELS ONLY)

EXTERNAL TRIM CONNECTION
1 Make connections at converter.

Trim FormulasVout = desired output voltage; Rt = trim resistor 3.3 V: Rt = <u>1300 * Vout - 4304</u> 1.2475 5 V: Rt = <u>1300 * Vout - 6512</u> 1.2475 12 V: Rt = <u>1300 * Vout - 15631</u> 1.2475 15 V: Rt = <u>1300 * Vout - 19498</u> 1.2475

FIGURE 2: TRIM CONNECTION 1, 2, 3

Notes

1. When trimming output voltage and/or remote sensing, the total output voltage increase must be less than 0.6 volts at the converters pins to maintain specified performance.

- 2. If neither voltage trim nor remote sense will be used, connect pin 9 to pin 10 and pin 11 to pin 12 or the output voltage will increase by 1.2 volts
- 3. CAUTION: The converter will be permanently damaged if the positive remote sense (pin 12) is shorted to ground. Damage may also result if the output common or positive output is disconnected from the load with the remote sense leads connected to the load.

PIN OUT								
Pin	Single Output	Dual Output						
1	Sync	Sync						
2	Inhibit Sync/Rtn	Inhibit Sync/Rtn						
3	Filter Out Rtn	Filter Out Rtn						
4	Filter Out	Filter Out						
5	Inhibit	Inhibit						
6	No Connection	No Connection						
7	Input Common	Input Common						
8	Vin	Vin						
9	Sense Rtn	No Connection						
10	Output Common	Negative Output						
11	Positive Output	Output Common						
12	Positive Sense	Positive Output						

17 TO 40 VOLT INPUT - 20 TO 30 WATT

TABLE 1: PIN OUT

See case U for dimensions.

FIGURE 4 PIN OUT

17 TO 40 VOLT INPUT - 20 TO 30 WATT

FIGURE 5: MODEL NUMBERING KEY

MODEL NUMBER OPTIONS To determine the model number enter one option from EACH CATEGORY IN THE FORM BELOW.										
CATEGORY	Base Model and Input Voltage	Output Voltage ¹	Number of Outputs ²		Screening ³					
ODTIONS	EMTD29	3R3, 05, 12, 15	S		(standard, leave blank)					
OFTIONS	FIVITR20	05, 12, 15	D		ES					
FILL IN FOR MODEL # ⁴	FMTR28			/						

Notes

1. Output Voltage: An R indicates a decimal point. 3R3 is 3.3 volts out. The value of 3R3 is only available in single output models.

2. Number of Outputs: S is a single output and D is a dual output.

3. Screening: For standard screening leave the screening option blank. For other screening options, insert the desired screening level. For more information see Table 7 on page 12.

4. If ordering by model number add a "-Q" to request solder dipped leads (FMTR2805S/ES-Q).

TABLE 2: MODEL NUMBER OPTIONS

17 TO 40 VOLT INPUT - 20 TO 30 WATT

		AI	L MODE	LS	
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
LEAD SOLDERING TEMPERATURE ¹	10 SECONDS MAX.	-	_	300	°C
STORAGE TEMPERATURE ¹		-65	_	+150	°C
CASE OPERATING	FULL POWER	-55	_	+125	°C
TEMPERATURE	ABSOLUTE ¹	-55	_	+135	
DERATING OUTPUT POWER/CURRENT ¹	LINEARLY	From 100% at 125 °C to 0% at 13			6 at 135°C
ISOLATION: INPUT TO OUTPUT, INPUT TO CASE, OUTPUT TO CASE ²	@ 500 VDC AT 25°C	100	_	_	Megohms
INPUT TO OUTPUT CAPACITANCE ¹		- 1	50	_	pF
CURRENT LIMIT ³	% OF FULL LOAD	- 1	115	_	%
AUDIO REJECTION ¹		- I	40	_	dB
DC RESISTANCE (R _{DC}) ¹		- I	_	0.2	ohms
NOISE REJECTION	500 kHz	55	_	_	dB
-55°C TO +125°C	1 MHz	60	_	_	ub l
SWITCHING FREQUENCY	-55°C TO +125°C	550	600	650	kHz
SYNCHRONIZATION IN	INPUT FREQUENCY	500	_	675	kHz
-55°C TO +125°C	DUTY CYCLE ¹	40	_	60	%
	ACTIVE LOW	-	_	0.8	v
	ACTIVE HIGH ¹	4.5	_	5.0	
	REFERENCED TO		INHIBIT/S	SYNC RET	JRN
	IF NOT USED	CONNE	ECT TO IN	HIBIT/SYN	IC RETURN
INHIBIT ACTIVE LOW (OUTPUT DISABLED)	INHIBIT PIN PULLED LOW	-	—	0.8	V
Do not apply a voltage to the inhibit pin. $^{ m 4}$	INHIBIT PIN SOURCE CURRENT ¹	-	_	8	mA
	REFERENCED TO		INHIBIT/S	YNC RET	JRN
INHIBIT ACTIVE HIGH (OUTPUT ENABLED)	INHIBIT PIN CONDITION	OPEN COLLECTOR OR UNCONNECTE			ONNECTED
Do not apply a voltage to the inhibit pin. $^{ m 4}$	OPEN INHIBIT PIN VOLTAGE ¹	9	_	11	V

TABLE 3: OPERATING CONDITIONS, ALL MODELS, 25 °C CASE, 28 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

 $\ensuremath{\textbf{1}}.$ Guaranteed by characterization test and/or analysis. Not a production test.

2. When testing isolation, input pins are tied together and output pins are tied together. They are tested against each other and against case. Discharge the pins before and after testing.

3. Dual outputs: The over-current limit will trigger when the sum of the currents from both outputs reaches 115% (typical value) of the maximum rated "total" current of both outputs.

4. An external inhibit interface should be used to pull the inhibits low or leave them floating. The inhibit pins can be left unconnected if not used.

17 TO 40 VOLT INPUT - 20 TO 30 WATT

SINGLE OUTPUT MODELS		FMTR283R3S		FMTR2805S				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		3.20	3.30	3.40	4.85	5.00	5.15	V
OUTPUT CURRENT	V _{IN} = 17 то 40	0	_	6.06	0	_	5.0	A
OUTPUT POWER	V _{IN} = 17 то 40	0	_	20	0	_	25	W
OUTPUT RIPPLE	$T_{\rm C} = 25 ^{\circ}{\rm C}$	_	70	140	_	110	220	mV p-p
10 kHz - 2 MHz	T _C = -55°C TO +125°C	-	-	180	-	_	260	
LINE REGULATION	V _{IN} = 17 TO 40	-	-	10	_	15	50	mV
LOAD REGULATION	NO LOAD TO FULL	_	_	10	_	15	50	mV
INPUT VOLTAGE	CONTINUOUS	17	28	40	17	28	40	V
NO LOAD TO FULL	TRANSIENT 50 ms ¹	—	_	50	_	_	50	V
INPUT CURRENT	NO LOAD	-	30	75	_	35	75	
	INHIBITED ¹	-	7	8	_	3	8	mA
INPUT RIPPLE CURRENT	10 kHz - 10 MHz	_	5	10	_	5	10	mA p-p
EFFICIENCY	$T_{\rm C} = 25 ^{\circ}{\rm C}$	73	75	_	75	77	_	%
INCLUDES BUILT-IN FILTER	T _C = -55°C TO +125°C	70	72	-	72	74		
LOAD FAULT ²	POWER DISSIPATION	-	-	12	-	-	12	W
	RECOVERY ¹	—	1.4	6	-	1.4	5	ms
STEP LOAD RESPONSE ^{2, 3}	TRANSIENT	-	±125	±300	_	±200	±300	mV pk
50% - 100% - 50%	RECOVERY ¹	_	-	200	-	60	200	μs
STEP LINE RESPONSE 1, 2, 4	TRANSIENT	—	-	±300	_	±200	±300	mV pk
V _{IN} = 17 - 40 - 17	RECOVERY	-	-	300	-	_	300	μs
START-UP ^{2, 5}	DELAY	-	1.4	5	-	1.4	5	ms
	OVERSHOOT ¹	_	0	50	-	0	50	mV pk

TABLE 4: ELECTRICAL CHARACTERISTICS: -55°C TO +125°C CASE, 28 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. Recovery time is measured from application of the transient to the point at which $V_{\mbox{OUT}}$ is within 1% of final value.

3. Step load test is performed at 10 microseconds typical.

4. Step line characterization test is performed at 100 microseconds \pm 20 microseconds.

5. Tested on release from inhibit.

17 TO 40 VOLT INPUT - 20 TO 30 WATT

SINGLE OUTPUT MODELS		FMTR2812S			F			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		11.64	12.00	12.36	14.55	15.00	15.45	V
OUTPUT CURRENT	V _{IN} = 17 то 40	0	_	2.5	0	—	2.0	А
OUTPUT POWER	V _{IN} = 17 то 40	0	_	30	0	_	30	W
OUTPUT RIPPLE	$T_{\rm C} = 25 ^{\circ}{\rm C}$	_	60	120	_	25	50	mV p-p
10 kHZ - 2 MHZ	T _C = -55°C TO +125°C	-	-	160	—	_	90	
LINE REGULATION	V _{IN} = 17 TO 40	-	15	50	—	15	50	mV
LOAD REGULATION	NO LOAD TO FULL	-	15	50	—	15	50	mV
INPUT VOLTAGE	CONTINUOUS	17	28	40	17	28	40	V
NO LOAD TO FULL	TRANSIENT 50 ms ¹	_	-	50	_	_	50	V
INPUT CURRENT	NO LOAD	-	35	75	—	35	75	
	INHIBITED ¹	_	3	8	-	3	8	mA
INPUT RIPPLE CURRENT	10 kHz - 10 MHz	_	5	10	_	5	10	mA p-p
EFFICIENCY	$T_{\rm C} = 25 ^{\circ}{\rm C}$	79	82	-	80	83	_	%
INCLUDES BUILT-IN FILTER	T _C = -55°C TO +125°C	76	78	—	77	79		
LOAD FAULT ²	POWER DISSIPATION	-	-	12	—	_	12	W
	RECOVERY ¹	_	1.4	5	_	1.4	5	ms
STEP LOAD RESPONSE ^{2, 3}	TRANSIENT	-	±250	±400	—	±350	±500	mV pk
50% - 100% - 50%	RECOVERY ¹	-	60	200	-	60	200	μs
STEP LINE RESPONSE 1, 2, 4	TRANSIENT	—	±400	±500	—	±500	±600	mV pk
V _{IN} 17 - 40 - 17	RECOVERY	-	-	300	—	_	300	μs
START-UP ^{2, 5}	DELAY	-	1.4	5	-	1.4	5	ms
	OVERSHOOT ¹	_	0	120	-	0	150	mV pk

TABLE 5: ELECTRICAL CHARACTERISTICS: -55°C TO +125°C CASE, 28 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. Recovery time is measured from application of the transient to the point at which $V_{\mbox{OUT}}$ is within 1% of final value.

3. Step load test is performed at 10 microseconds typical.

4. Step line characterization test is performed at 100 microseconds \pm 20 microseconds.

5. Tested on release from inhibit.

17 TO 40 VOLT INPUT - 20 TO 30 WATT

DUAL OUTPUT MODELS		FMTR2805D		FMTR2812D			FMTR2815D				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	+ V _{OUT}	4.85	5.00	5.15	11.64	12.00	12.36	14.55	15.00	15.45	V
	- V _{OUT}	4.80	5.00	5.18	11.56	12.00	12.42	14.46	15.00	15.53	Ň
OUTPUT CURRENT ²	EACH OUTPUT	0	±2.5	4.5	0	±1.25	2.25	0	±1.0	1.8	Δ
V _{IN} = 17 TO 40	TOTAL OUTPUT	0	-	5	0	-	2.5	0	-	2	
OUTPUT POWER ²	TOTAL OUTPUT	_	_	25	_	_	30	_	_	30	w
V _{IN} = 17 TO 40											
OUTPUT RIPPLE	$T_{C} = 25 \degree C + V_{OUT}$	-	-	140	_	-	80	_	-	80	mV n-n
10 kHz - 2 MHz	-55°C to +125°C +V _{OUT}	-	-	140	-	-	80	_	-	80	
	$T_{C} = 25 \degree C -V_{OUT}$	-	-	180	-	-	120	_	-	120	
	-55°C to +125°C -V _{OUT}	-	-	180	-	-	120	_	-	120	
LINE REGULATION	+ V _{OUT}	-	10	50	-	10	50	_	10	50	mV
V _{IN} = 17 то 40	- V _{OUT}	-	50	100	-	50	150	_	50	180	
LOAD REGULATION	+ V _{OUT}	-	5	50	-	15	50	_	15	50	m\/
NO LOAD TO FULL	- V _{OUT}	-	45	120	-	45	170	_	40	190	1110
CROSS REGULATION	SEE NOTE 3	-	8	-	-	5	-	_	3	-	%
$T_{C} = 25 \degree C$	SEE NOTE 4	-	5	-	_	4	-	-	4	-	70
INPUT VOLTAGE	CONTINUOUS	17	28	40	17	28	40	17	28	40	V
NO LOAD TO FULL	TRANSIENT 50 ms ¹	-	-	50	-	-	50	-	-	50	V
INPUT CURRENT	NO LOAD	-	35	75	-	50	75	_	50	75	
	INHIBITED ¹	-	3	8	-	3	8	_	3	8	MA
INPUT RIPPLE CURRENT	10 kHz TO 10 MHz	-	5	10	-	5	10	-	5	10	mA p-p
EFFICIENCY	T _C = 25°C	75	77	_	78	80	-	79	82	_	%
BALANCED LOAD	T _C = -55°C TO +125°C	72	74	_	75	77	-	76	78	-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
LOAD FAULT ⁵	POWER DISSIPATION	-	_	12	_	-	12	_	-	12	W
	RECOVERY ¹	-	1.4	5	-	1.4	5	_	1.4	5	ms
STEP LOAD RESPONSE 5, 6	TRANSIENT	_	±200	±300	_	±150	±300	_	±200	±400	mV pk
50% TO 100% TO 50% ± V _{OUT}	RECOVERY ¹	_	100	200	_	100	200	_	100	200	μs
STEP LINE RESPONSE ^{1, 5, 7}	TRANSIENT	-	±200	±400	_	±250	±400	_	±400	±500	mV pk
VIN = 17 TO 40 -17 ± V _{OUT}	RECOVERY	-	-	300	_	-	300	_	-	300	μs
START-UP ^{5, 8}	DELAY	-	1.4	5	_	1.4	5	_	1.4	5	ms
	OVERSHOOT 1		0	50	_	0	120	_	0	150	mV pk

TABLE 6: ELECTRICAL CHARACTERISTICS: -55°C TO +125°C CASE, 28 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test. 2. Up to 90% of the total output power is available from either output providing the

opposite output is simultaneously carrying 10% of the total power. 3. Effect on negative Vout from 50%/50% loads to 90%/10% or

10%/90% loads.

4. Effect on negative Vout from $\,50\%/50\%$ loads to 50% then 10% load on negative Vout.

5. Recovery time is measured from application of the transient to point at which Vout is within 1% of final value.

6. Step load test is performed at 10 microseconds typical.

7. Step line characterization test is performed at 100 microseconds \pm 20 microseconds.

8. Tested on release from inhibit.

FIGURE 11

FMTR Single and Dual EMI Filtered DC-DC Converters

17 TO 40 VOLT INPUT - 20 TO 30 WATT

FIGURE 10

FIGURE 9

FIGURE 12

17 TO 40 VOLT INPUT - 20 TO 30 WATT

Typical Performance Plots: 25 °C case, unless otherwise specified. For reference only. Not guaranteed specifications.

17 TO 40 VOLT INPUT - 20 TO 30 WATT

TOP VIEW CASE U Flanged case, short leads

17 TO 40 VOLT INPUT - 20 TO 30 WATT

Environmental Screening DC-DC Converters and EMI Filters Standard and /ES 1

TEST PERFORMED	STANDARD	/ES
Pre-cap Inspection Method 2017, 2032		
Temperature Cycle (10 times) Method 1010, Cond. B, -55 °C to +125 °C, ambient		
Constant Acceleration Method 2001, 500 g		
Burn-in Method 1015 ²		
96 hours		
Final Electrical Test MIL-PRF-38534, Group A Subgroups 1 and 4: +25°C case		
Hermeticity Test, Method 1014		
Gross Leak, Cond. C1, fluorocarbon		
Fine Leak, Cond. A ₂ , helium		
Gross Leak, Dip		
Final visual inspection Method 2009		

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes

1. Standard and /ES products may not meet all of the requirements of MIL-PRF-38534.

2. Burn-in temperature designed to bring the case temperature to the maximum case temperature of the product. Refer to the specific product information for the maximum case temperature. Burn-in is a powered test.

TABLE 7: ENVIRONMENTAL SCREENING

