16 TO 40 VOLT INPUT - 1.5 WATT

FEATURES

 Radiation tolerant space DC-DC converter
 Single event effects (SEE) LET performance to 86 MeV cm²/mg

Total ionizing dose (TID) guaranteed per MIL-STD-883 method 1019, radiation hardness assurance (RHA)

L = 50 krad(Si), R = 100 krad(Si)

- Operating temperature -55°C to +125°C
- · Qualified to MIL-PRF-38534 Class H and K
- · Input voltage range 16 to 40 V
- · Transient protection 50 V for 50 ms
- · Fully isolated magnetic feedback
- · Inhibit function
- · Indefinite short circuit protection

MODELS					
OUTPUT VOLTAGE (V)					
SINGLES	DUALS				
5	±5				
12	±12				
15	±15				

DESCRIPTION

The Interpoint® SLH Series™ of DC-DC converters offers up to 1.5 watts of power in a radiation tolerant design. The low profile SLH converters are manufactured in our fully certified and qualified MIL-PRF-38534 Class K production facility and packaged in hermetically sealed steel cases. They are ideal for use in programs requiring high reliability, small size, and high levels of radiation hardness assurance. A small footprint of 0.79 square inches saves board space. The wide input voltage range of 16 to 40 volts accepts the varying voltages of space, military, or aerospace bus power and regulates output voltages to protect downstream components. Single output models feature outputs of 5, 12, or 15 volts, and dual output models feature outputs of ±5, ±12 and ±15 volts.

SCREENING

SLH converters offer screening to Class H or K and radiation hardness assurance (RHA) levels L - 50 krad(Si) or R - 100 krad(Si). Single event effects (SEE) LET performance to $86 \text{ MeV} \text{ cm}^2/\text{mg}$. See Table 10 on page 13 for more information.

CONVERTER DESIGN

SLH Series DC-DC converters incorporate a flyback topology with a variable switching frequency. Feedback provides output voltage regulation. Output voltage is magnetically fed back to the input side of the PWM to regulate output voltage.

Up to 80% of the load of the dual output models may be on one output providing that the other output carries a minimum of 20% of the total load. The dual models can be used as a single output voltage by connecting the load between positive and negative outputs, leaving the common unconnected resulting in double the output voltage. (for example, SLH2805D can be used as a 10 volt output.)

When used with Interpoint's STF28-461 filter, the combination will meet the requirements of MIL-STD-461C, CE03.

INHIBIT FUNCTION

The SLH Series incorporates an inhibit terminal that can be used to disable internal switching. The converter is inhibited when an active low (\leq 0.5 V) signal is applied to the inhibit pin (pin 7). In the inhibit mode the inhibit pin sources up to 2 mA maximum. The converter resumes normal operation when an open circuit is applied to the inhibit pin. The open circuit voltage of the inhibit is 7 to 8 volts. Do not apply an external pull-up to the inhibit terminal.

PROTECTION FEATURES

All models include a soft-start function to prevent large current draw and minimize overshoot. The converters provide short circuit protection (by restricting the current) and output overload protection.

CONVENIENT PACKAGING

The SLH Series converters are packaged in hermetically sealed metal cases which provide EMI/RFI shielding.

16 TO 40 VOLT INPUT - 1.5 WATT

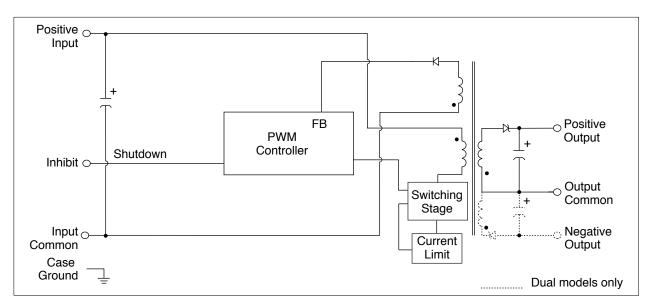


FIGURE 1: SLH BLOCK DIAGRAM

PIN OUT						
Pin	Single Output	Dual Output				
1	Positive Input	Positive Input				
2	Input Common	Input Common				
3	Positive Output	Positive Output				
4	Output Common	Output Common				
5	Case Ground	Case Ground				
6	No Connection	Negative Output				
7	Inhibit	Inhibit				

TABLE 1: PIN OUT

	red corner cover indi		
⊙ ⊙ 1 2	⊙ 3	<u>•</u> 4	
В	ottom View		
7 •	6 ⊙	5	

See Figure 23 on page 10 for dimensions.

FIGURE 2: PIN OUT

PINS NOT IN USE						
Inhibit	Leave unconnected					
"No Connection" pin	Leave unconnected					

TABLE 2: PINS NOT IN USE

16 TO 40 VOLT INPUT - 1.5 WATT

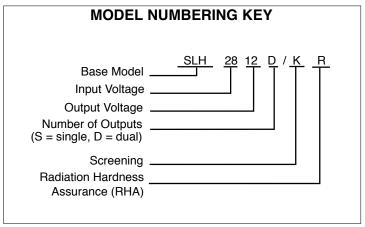


FIGURE 3: MODEL NUMBERING KEY

SMD NUMBERS							
STANDARD MICROCIRCUIT DRAWING (SMD)	SLH SIMILAR PART						
5962R0052601KXC	SLH2805S/KR						
5962R0052701KXC	SLH2812S/KR						
5962R0052801KXC	SLH2815S/KR						
5962R0250402KXC	SLH2805D/KR						
5962R9955602KXC	SLH2812D/KR						
5962R9852902KXC	SLH2815D/KR						

The SMD number shown is for Class K screening and radiation hardness assurance (RHA) level R. See the SMD for the numbers for other screening and radiation levels. For exact specifications for an SMD product, refer to the SMD drawing. SMDs can be downloaded from

https://landandmaritimeapps.dla.mil/programs/smcr

TABLE 3: SMD NUMBER CROSS REFERENCE

MODEL NUMBER OPTIONS On the lines below, enter one selection from each category to determine the model number.										
CATEGORY	Base Model and Input Voltage Output Voltage Outputs 1 Screening 2									
		05, 12, 15	S	0	0					
OPTIONS	SLH28	05, 12, 15	D	н	P ⁴					
				к	L					
					R					
FILL IN FOR MODEL # 5	SLH28			<i>1</i> ———						

- 1. Number of Outputs: S is a single output and D is a dual output.
 2. Screening: A screening level of O is a Space Prototype and is only used with RHA O. See Table 8 on page 11 and Table 9 on page 12 for more information.
- 3. RHA: Interpoint model numbers use an "O" in the RHA designator position to indicate the "-" (dash) RHA level of MIL-PRF-38534, which is defined as "no RHA." RHA O is only available with Screening level O. See Table 10 on page 13 for more information.
- 4. RHA P is only available for SLH2805D.
- 5. If ordering by model number add a "-Q" to request solder dipped leads (SLH2805S/KR-Q).

TABLE 4: MODEL NUMBER OPTIONS

16 TO 40 VOLT INPUT - 1.5 WATT

Table 5: Operating Conditions - All Models, 25°C case, 28 volts Vin, unless otherwise specified

		ļ A	ALL MODEL	.S		
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS	
LEAD SOLDERING TEMPERATURE ¹	10 SECONDS MAX.	_	_	300	°C	
STORAGE TEMPERATURE		-65	_	+150	°C	
CASE OPERATING	FULL POWER	-55	_	+125	°C	
TEMPERATURE	ABSOLUTE ¹	-55	_	+135		
DERATING OUTPUT POWER/CURRENT ¹	LINEARLY	From 10	00% at 125°C	to 0% at	135°C	
ESD RATING ^{1, 2}	MIL-STD-883 METHOD 3015	_	_	≥8000	V	
MIL-PRF-38534, 3.9.5.8.2	CLASS 3B			=5000	·	
ISOLATION, INPUT TO OUTPUT OR	@ 500 VDC AT 25°C	100	_	_	Megohms	
ANY PIN TO CASE EXCEPT CASE PIN	@ 300 VDO AT 23 C	100	_		Wegorins	
INPUT TO OUTPUT CAPACITANCE ¹		_	100 - 170	_	pF	
SWITCHING FREQUENCY 3	5, 12, 15, ±5 AND ±15	220	280	320	kHz	
-55° TO +125°C	±12	220	_	420	IN 12	
INHIBIT ACTIVE LOW (OUTPUT DISABLED) Do not apply a voltage to the inhibit pin ⁴	INHIBIT PIN PULLED LOW	_	_	0.5	V	
	INHIBIT PIN SOURCE CURRENT ¹	_	_	2	mA	
	REFERENCED TO		INPUT C	OMMON		
INHIBIT ACTIVE HIGH (OUTPUT ENABLED) Do not apply a voltage to the inhibit pin ⁴	INHIBIT PIN CONDITION		OPEN COLL	ECTOR NECTED	OR	
	OPEN INHIBIT PIN VOLTAGE ¹	7	_	8	٧	

For mean time between failures (MTBF) contact Applications Engineering powerapps@craneae.com +1 425.882.3100

Notes:

- 1. Guaranteed by characterization test and/or analysis. Not a production test.
- 2. Passes 8000 volts.
- 3. Since the SLH is a variable frequency converter, the frequency range, with different line and load conditions, can be significantly different than the stated values in this table.
- 4. An external inhibit interface should be used to pull the inhibit low or leave it floating. The inhibit pin can be left unconnected if not used. Do not apply an external pull-up.

16 TO 40 VOLT INPUT - 1.5 WATT

Table 6: Electrical Characteristics: -55° to +125°C case, 28 Vin, 100% load, unless otherwise specified

SINGLE OUTPUT MODELS	1	SLH2805S		SLH2812S			s				
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE ²		4.80	5.00	5.20	11.52	12.00	12.48	14.40	15.00	15.60	V
OUTPUT CURRENT	V _{IN} = 16 TO 40 V	_	_	300	_	_	125	_	_	100	mA
OUTPUT POWER	V _{IN} = 16 TO 40 V	_	_	1.5	_	_	1.5	_	_	1.5	W
OUTPUT RIPPLE	T _C = 25°C	_	65	150	_	35	200	_	60	200	mV p-p
10 kHz - 2 MHz	T _C = -55°C TO +125°C	_	_	250	_	_	300	_	_	300	
LINE REGULATION	V _{IN} = 16 TO 40 V	_	115	300	_	60	400	_	60	650	mV
LOAD REGULATION 3	LOAD 10% TO 100%	_	440	700	_	380	700	_	410	700	mV
INPUT VOLTAGE	CONTINUOUS NO LOAD TO FULL	16	28	40	16	28	40	16	28	40	V
	TRANSIENT ¹ 50 ms	_	_	50	_	_	50	_	_	50	ľ
INPUT CURRENT	NO LOAD	_	2.9	17	_	2.3	17	_	2.4	17	mA
	INHIBITED	_	1.3	5	_	1.3	5	_	1.3	5	117
INPUT RIPPLE CURRENT 4	10 kHz - 10 MHz	_	85	250	_	75	300	_	60	300	mA p-p
EFFICIENCY	T _C = 25°C	72	79	_	80	87	_	80	88	_	%
	T _C = -55°C TO +125°C	69	_	_	69	_	_	69	_	_	, ,
LOAD FAULT ^{5, 6}	SHORT CIRCUIT POWER DISSIPATION	_	0.4	1.5	_	0.3	1.2	_	0.3	1.2	W
	RECOVERY 1	_	_	30	_	_	30	_	_	30	ms
STEP LOAD RESPONSE 6, 7	TRANSIENT	_	±250	±400	_	±220	±700	_	±220	±700	mV pk
50% - 100% - 50%	RECOVERY 1	_	_	400	_	_	400	_	_	400	μs
STEP LINE RESPONSE 1, 6, 8	TRANSIENT	_	_	±600	_	_	±600	_	_	±600	mV pk
16 - 40 - 16 V	RECOVERY	_	_	500	_	_	500	_	_	500	μs
START-UP ^{6, 9}	DELAY	_	1	20	_	1	20	_	1	20	ms
	OVERSHOOT ¹	_	_	100	_	_	500	_	_	500	mV pk
CAPACITIVE LOAD ¹ T _C = 25°C	NO EFFECT ON DC PERFORMANCE	_	_	100	_	_	100	_	_	100	μF

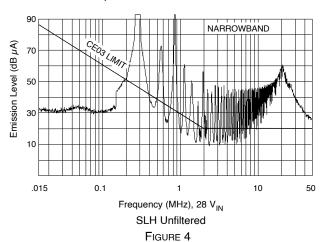
Notes:

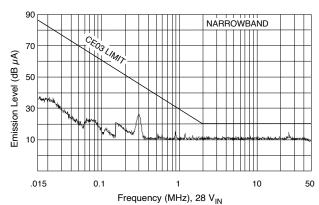
- 1. Guaranteed by characterization test and/or analysis. Not a production test.
- 2. Specified at 50% load.
- 2. Opcomined at 50 % load.
 3. Although no minimum load is required, at no load the output voltage may exceed rating by up to approximately 15%.
- 4. An external 6 μ H inductor, added in series to the input, is necessary to maintain specifications.
- 5. Load fault is a short circuit into 1Ω . Recovery is into resistive full load.
- 6. Recovery and start-up times are measured from application of the transient or change in condition to the point at which V_{OUT} is within 1% of final value.
 7. Step load test is performed at 10 microseconds typical. Step load response is
- Step load test is performed at 10 microseconds typical. Step load response is mostly due to the effects of load regulation. See Figure 10 on page 8.
- 8. Step line test is performed at 100 microseconds \pm 20 microseconds.
- 9. Measured from release of inhibit.

16 TO 40 VOLT INPUT - 1.5 WATT

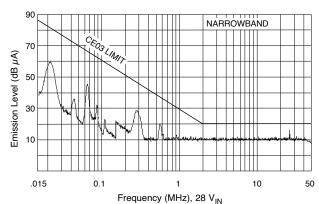
Table 7: Electrical Characteristics: -55° to +125°C case, 28 Vin, 100% load, unless otherwise specified

DUAL OUTPUT MODELS		s	SLH2805D		SLH2812D			SLH2815D			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE 2	±V _{OUT}	4.80	5.00	5.20	11.52	12.00	12.48	14.40	15.00	15.60	V
OUTPUT CURRENT ³	EACH OUTPUT	_	150	240	_	62.5	100	_	50	80	mA
V _{IN} = 16 TO 40 V	TOTAL			300			125			100	1
OUTPUT POWER ³	EACH OUTPUT	_	0.75	1.2	_	0.75	1.2	_	0.75	1.2	w
V _{IN} = 16 TO 40 V	TOTAL			1.5			1.5			1.5	
OUTPUT RIPPLE	T _C = 25°C	_	_	150	_	_	200	_	_	300	mV p-p
10 kHz - 2 MHz ±V _{OUT}	$T_{C} = -55^{\circ}C \text{ TO } +125^{\circ}C$		_	250	_	_	400	_	_	500	
LINE REGULATION ±V _{OUT}	V _{IN} = 16 TO 40 V	_	75	400	_	75	700	_	85	650	mV
LOAD REGULATION 4	BALANCED LOADS		0.10	700		050	700		070	700	
10% - 100%	±V _{OUT}	_	310	700	_	350	700	_	370	700	mV
INPUT VOLTAGE	CONTINUOUS NO LOAD TO FULL	16	28	40	16	28	40	16	28	40	V
	TRANSIENT ¹ 50 ms	0	_	50	0	_	50	0	_	50	
INPUT CURRENT	NO LOAD	_	3.1	17	_	3.1	17	_	3.3	17	mA
	INHIBITED	_	1.4	5	_	1.4	5	_	1.4	5	
INPUT RIPPLE CURRENT 5	10 kHz - 10 MHz	_	80	250	_	90	300	_	100	300	mA p-p
EFFICIENCY	T _C = 25°C	72	75	_	80	87	_	80	87	_	%
	T _C = -55°C TO +125°C	69	_	_	69	_	_	69	_	_	, ,
LOAD FAULT 6, 7	SHORT CIRCUIT POWER DISSIPATION	_	0.3	1.5	_	0.3	1.2	_	0.3	1.2	w
	RECOVERY 1	_	-	30	_	1	30	_	1	30	ms
STEP LOAD RESPONSE 7,8											
BALANCED LOADS	TRANSIENT	_	±150	±400	_	±170	±600	_	±200	±700	mV pk
50% - 100% - 50% ±V _{OUT}	RECOVERY 1	_	_	600	_	_	360	_	_	600	μs
STEP LINE RESPONSE 1, 7, 9	TRANSIENT	_	_	±600	_	_	±600	_	_	±600	mV pk
16 - 40 - 16 V, ±V _{OUT}	RECOVERY	_	_	500	_	_	500	_	_	500	μs
START-UP ^{7, 10}	DELAY	_	1	20	_	2	20	_	2	20	ms
$\pm V_{OUT}$	OVERSHOOT 1	_	_	500	_	_	500	_	_	500	mV pk
CAPACITIVE LOAD ¹ T _C = 25°C, EACH OUTPUT	NO EFFECT ON DC PERFORMANCE	_	_	100	_	_	100	_	_	100	μF

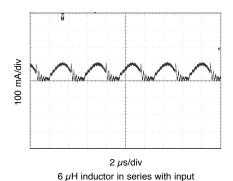

Notes

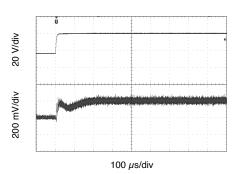

- ${\bf 1.} \ Guaranteed \ by \ characterization \ test \ and/or \ analysis. \ Not \ a \ production \ test.$
- 2. Specified at 50%/50% balanced loads and one half of full load.
- Maximum specification indicates 80% of the converter's total current/power is available from either output, provided the other output carries 20% of the total power.
- Although no minimum load is required, at no load the output voltage may exceed rating by up to approximately 15%.
- 5. An external 6 μ H inductor, added in series to the input, is necessary to maintain specifications.
- 6. Load fault is a short circuit into 1Ω . Recovery is into resistive full load.
- 7. Recovery and start-up times are measured from application of the transient or change in condition to the point at which V_{OUT} is within 1% of final value.
- Step load test is performed at 10 microseconds typical. Step load response is mostly due to the effects of load regulation. See Figure 18 on page 9.
- 9. Step line test is performed at 100 microseconds \pm 20 microseconds.
- 10. Measured from release of inhibit.

16 TO 40 VOLT INPUT - 1.5 WATT


Typical Performance Plots: 25°C case, unless otherwise specified. For reference only. Not guaranteed specifications.

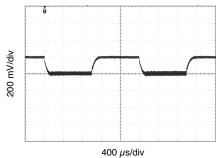
EMI: Representative of all SLH Models

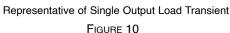

SLH2805S with STF EMI Filter and required 4 μ F capacitors (per STF datasheet), MIL-STD-461C, CE03 FIGURE 5

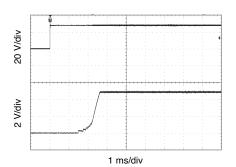

Two SLH2805S with STF EMI Filter and required 4 μ F capacitors (per STF datasheet), MIL-STD-461C, CE03 FIGURE 6

16 TO 40 VOLT INPUT - 1.5 WATT

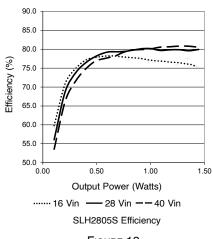
Typical Performance Plots: 25°C case, unless otherwise specified. FOR REFERENCE ONLY. NOT GUARANTEED SPECIFICATIONS.

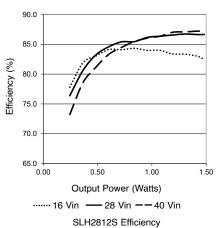

100 mV/div 2 μs/div



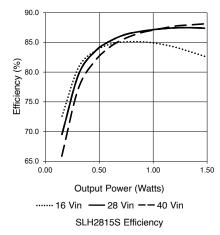

Representative of Single Input Ripple Current FIGURE 7

Representative of Single Output Ripple Voltage FIGURE 8


Vin 16 to 40 to 16 Volts, full resistive load Representative of Single Output Line Transient FIGURE 9



Representative of Single Output Turn-On Delay FIGURE 11



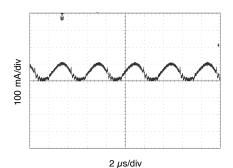
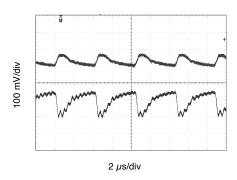
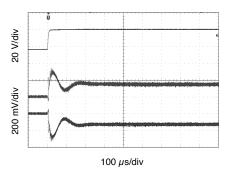

FIGURE 14

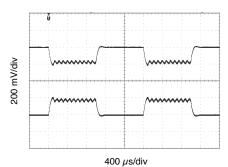
FIGURE 12

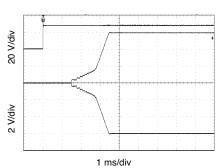

FIGURE 13

16 TO 40 VOLT INPUT - 1.5 WATT

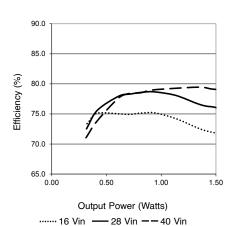

Typical Performance Plots: 25°C case, unless otherwise specified. For reference only. Not guaranteed specifications.

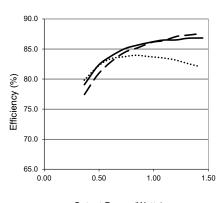
 $_{\rm 6}\,\mu{\rm H}$ inductor in series with input Representative of Dual Input Ripple Current Figure 15


Representative of Dual Output Ripple Voltage Figure 16

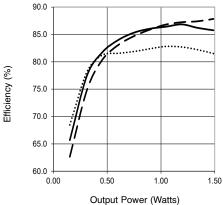

Vin 16 to 40 to 16 Volts, full resistive load

Representative of Single Output Line Transient


FIGURE 17


Representative of Dual Output Load Transient FIGURE 18

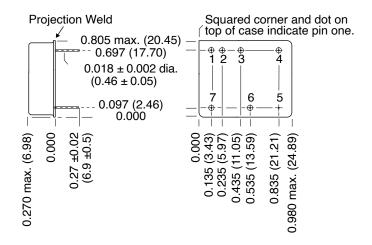
Representative of Dual Output Turn-On Delay FIGURE 19



SLH2805D Efficiency
FIGURE 20

Output Power (Watts)
...... 16 Vin —— 28 Vin —— 40 Vin
SLH2812D Efficiency

FIGURE 21



······ 16 Vin — 28 Vin — 40 Vin SLH2815D Efficiency

FIGURE 22

16 TO 40 VOLT INPUT - 1.5 WATT

BOTTOM VIEW CASE A2

Weight: 12 grams typical

Case dimensions in inches (mm)

Tolerance ± 0.005 (0.13) for three decimal places

±0.01 (0.3) for two decimal places

unless otherwise specified

CAUTION

Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header Kovar/Nickel/Gold Cover Kovar/Nickel

Pins Kovar/Nickel/Gold matched glass seal

Gold plating of 50 - 225 microinches

included in pin diameter

Seal hole: $0.056 \pm 0.001 (1.42 \pm 0.03)$

Please refer to the numerical dimensions for accuracy.

FIGURE 23: CASE A2

16 TO 40 VOLT INPUT - 1.5 WATT

ELEMENT EVALUATION SPACE DC-DC CONVERTERS PROTOTYPE, CLASS H AND CLASS K

	NON-QML 1	QML ²				
	Ркототуре	CLAS	ss H	CLASS	κ	
	/0	/ -	1	/K		
COMPONENT-LEVEL TEST PERFORMED	M/S 3	M/S 3	P 4	M/S 3	P 4	
Element Electrical	•		•		•	
Visual		•	•	•	•	
Internal Visual						
Temperature Cycling				•	•	
Constant Acceleration					•	
Interim Electrical						
Burn-in				•		
Post Burn-in Electrical						
Steady State Life				•		
Voltage Conditioning Aging					•	
Visual Inspection					•	
Final Electrical		•	•	•	-	
Wire Bond Evaluation			•		•	
SEM				•		

Notes

- 1. Non-QML products may not meet all of the requirements of MIL-PRF-38534.
- 2. Screened to MIL-PRF-38534. Class H and K are pending product validation.
- 3. M/S = Active components (microcircuit and semiconductor die)
- 4. P = Passive components, Class H and K element evaluation. Not applicable to space prototype ("O") element evaluation.

Definitions

Element Evaluation: Component testing/screening per MIL-STD-883 as determined by MIL-PRF-38534 SEM: scanning electron microscopy

TABLE 8: ELEMENT EVALUATION-DC-DC CONVERTERS PROTOTYPE, CLASS H AND CLASS K

16 TO 40 VOLT INPUT - 1.5 WATT

ENVIRONMENTAL SCREENING SPACE DC-DC CONVERTERS PROTOTYPE, CLASS H AND K, RHA P, L AND R

	NON-QML 1	QML ²						
	PROTOTYPE	(CLASS H CLASS I				K	
TEST PERFORMED	/OO ³	/HP	/HL	/HR	/KP	/KL	/KR	
Non-destruct wire bond pull, Method 2023		■ 4	■ 4	■ 4		•		
Pre-cap Inspection, Method 2017, 2032						•		
Temperature Cycle (10 times)								
Method 1010, Cond. C, -45°C to +150°C, ambient	-	•	•	•	•	-	-	
Constant Acceleration								
Method 2001, 3000 g	•	•	•	•	-	-	-	
PIND, Test Method 2020, Cond. A		4	4	4		•		
Pre burn-in test, Group A, Subgroups 1 and 4	•	■ 4	■ 4	■ 4	•	•		
Burn-in Method 1015, +125°C case, typical ⁵								
96 hours								
160 hours		•	•	•				
2 x 140 hours (includes mid-BI test)						-		
Final Electrical Test, MIL-PRF-38534, Group A,								
Subgroups 1 and 4: +25°C case	•							
Subgroups 1 through 4, -55°C, +25°C, +125°C case						-		
Hermeticity Test, Method 1014								
Gross Leak, Cond. B ₂ , Kr85						-		
Gross Leak, Cond. C ₁ , fluorocarbon								
Fine Leak, Cond. B ₁ , Kr85						•		
Fine Leak, Cond. A ₂ , helium								
Radiography, Method 2012					-	-		
Post Radiography Electrical Test, +25°C case					■ 4	■ 4	■ 4	
Final visual inspection, Method 2009			•			-		

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes

- Non-QML prototype products may not meet all of the requirements of MIL-PRF-38534.
- 2. All processes are QML qualified and performed by certified operators.
- 3. "O" in the RHA designator position in Interpoint model numbers indicates DLA RHA "-" defined as no RHA.
- 4. Not required by DLA but performed to assure product quality.
- 5. Burn-in temperature designed to bring the case temperature to +125°C minimum. Burn-in is a powered test.

TABLE 9: ENVIRONMENTAL SCREENING DC-DC CONVERTERS PROTOTYPE, CLASS H AND CLASS K

16 TO 40 VOLT INPUT - 1.5 WATT

SPACE RADIATION HARDNESS ASSURANCE SCREENING DC-DC CONVERTERS CLASS H AND CLASS K, RHA 1 P, L AND R

	NON-QML ²			Q	ML				
	Ркототуре		CLASS H			CLASS K			
QUALIFICATION PER MIL-STD	/OO ³	/HP	/HL	/HR	/KP	/KL	/KR		
RHA P: 30 krad(Si) total dose ^{1, 4, 5, 6}					•				
SLH2805D only									
RHA L: 50 krad(Si) total dose ^{1, 4, 5}			-						
RHA R: 100 krad(Si) total dose 1, 4, 5				•			-		
SEE, LET 86 MeV cm ² /mg ^{1, 7}		-	-	-	-	-	-		

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes

- 1. DLA has approved the RHA plan for Interpoint power products. Our SMD products with RHA "P", "L" or "R" code meet DLA requirements.
- Non-QML prototype products may not meet all of the requirements of MIL-PRF-38534.
- 3. "O" in the RHA designator position in Interpoint model numbers indicates DLA RHA "-" defined as no RHA.
- Radiation sensitive components internal to the devices are procured with radiation guarantees or undergo radiation lot acceptance testing (RLAT) performed per condition A, method 1019 of MIL-STD-883.
- A representative converter was high dose rate (HDR) tested using condition A of method 1019 of MIL-STD-883 to 150 krad(Si) to ensure RHA designator level "R" (100 krad(Si)).
- 6. RHA "P" 30 krad(Si) is only available for SLH2805D.
- 7. Single event testing was performed on a converter to 86 MeV-cm²/mg using 15 MeV/nucleon gold ions with no latch-up, burn-out, functional interrupts, or gate ruptures exhibited. Single event upsets (output voltage transients) may be present up to 86 MeV-cm²/mg.

TABLE 10: SPACE RADIATION HARDNESS ASSURANCE DC-DC CONVERTERS CLASS H AND CLASS K, RHA P, L AND R

