16 TO 50 VOLTS INPUT - 10 TO 25 WATT

FEATURES

- 16 to 50 volt input
- Up to 87% efficiency, 42 W/in 3
- Available to Class H, MIL-PRF-38534
- Undervoltage lockout
- -55°C to +125°C operation
- Fully isolated, magnetic feedback
- Fixed frequency, 500 kHz typical
- 80 volt transient protection per MIL-STD-704A
- Inhibit and sync function
- Indefinite short circuit protection
- · Soft-start function limits inrush current during start-up

MODELS							
OUTPUT VOLTAGE (V)							
SINGLE	DUAL						
1.8	±5						
2.5	±7						
3.3	±12						
5	±15						
5.2							
5.7							
12]						
15]						
28							
L	1						

DESCRIPTION

The Interpoint® MFK Series[™] of DC-DC converters offers up to 25 watts of power in a low profile package. The MFK converters are manufactured in our fully certified and qualified MIL-PRF-38534 Class H production facility and packaged in hermetically sealed steel cases. They are ideal for use in programs requiring high reliability, small size, and high efficiency. The high frequency series offers a wide input voltage range of 16 to 50 volts and up to 25 watts of output power. The converters provide 80 volt transient protection per MIL-STD-704A. The package is a hermetically sealed, welded metal case. Flanged and non-flanged models are available.

CONVERTER DESIGN

The MFK converters are switching regulators that use a quasisquare wave, single-ended forward converter design with a constant switching frequency of 500 kHz, typical. Isolation between input and output circuits is provided with transformers in the power path and in the feedback control loop.

At 0.360 inch high and a total footprint of 1.7 in², this low profile package offers a total power density of up to 42 watts per cubic inch.

The dual models can be used as a single output voltage by connecting the load between positive and negative outputs, leaving the common unconnected, resulting in double the output voltage. (for example, MFK2815D can be used as a 30 volt output.) When using a dual to double the output voltage (span voltage) the maximum load capacitance across the span voltage is half that specified for each output.

AUDIO REJECTION AND FILTERING

The MFK converters current mode control system provides excellent dynamic response and audio rejection. Audio rejection is typically 50 dB. Output voltage response for a 50% to 100% step load transient is as low as 4% with a 400 μs recovery time.

The MFK Series converters are provided with internal filtering capacitors that help reduce the need for external components in normal operation. Use our FMCE-0328 EMI filter to meet the requirements of MIL-STD-461C CE03 and CS01 and MIL-STD-461D, E and F CE102 and CS101. Any of our Interpoint FMCE filters can be used to the rated current of the filter.

INHIBIT AND SYNCHRONIZATION

MFK converters provide an inhibit terminal that can be used to disable internal switching, resulting in no output and very low quiescent input current. The converter is inhibited when the inhibit pin is pulled below 0.8 volts. The converter is enabled when the pin, which is internally connected to a pull-up current source, is left unconnected or is connected to an open-collector gate. The open circuit voltage associated with the inhibit pin is 8.5 to 12 volts. In the inhibit mode, a maximum of 4 mA must be sunk from the inhibit pin.

A synchronization feature is included with the MFK Series that allows the user to match the switching frequency of the converter to the frequency of a system clock. Synchronization allows the user to adjust the nominal 500 kHz operating frequency to any frequency within the range of 450 kHz to 550 kHz. This is initiated by applying an active high input of the desired frequency to the sync pin. See Table 5 on page 6 for more information.

Page 1 of 32 MFK Rev AT - 2024.04.01

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

SHORT CIRCUIT PROTECTION

MFK Series converters provide indefinite short circuit protection by folding back the output voltage at approximately 125% of the full load output current.

UNDERVOLTAGE LOCKOUT

Undervoltage lockout with hysteresis prevents the converters from operating below approximately 15 volts input voltage to keep system current levels smooth, especially during initialization or re-start operations.

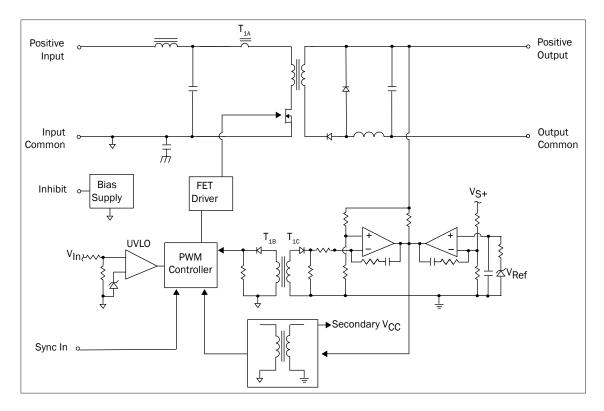
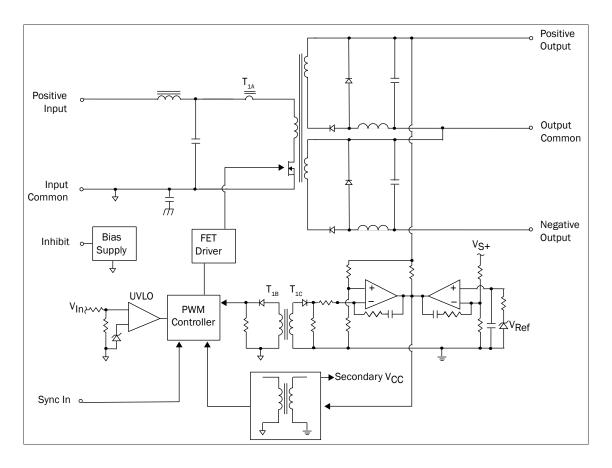
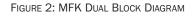
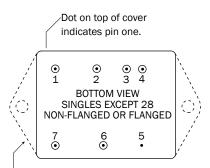




FIGURE 1: MFK SINGLE BLOCK DIAGRAM

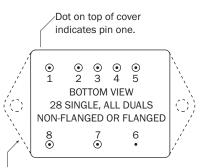
16 TO 50 VOLTS INPUT - 10 TO 25 WATT


	PIN OUT										
Pin	Single Output	MFK2828S	Dual Output								
1	Inhibit	Inhibit	Inhibit								
2	Output Common	Positive Output	Positive Output								
3	Positive Output	No Connection	Output Common								
4	Sync In	Output Common	Negative Output								
5	Case Ground	Sync In	Sync In								
6	Input Common	Case Ground	Case Ground								
7	Positive Input	Input Common	Input Common								
8	-	Positive Input	Positive Input								

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

TABLE 1: PIN OUT

PINS NOT IN USE					
Inhibit	Leave unconnected				
Sync	Leave unconnected				


TABLE 2: PINS NOT IN USE

Dotted line outlines flanged package option.

See Figure 53 on page 28 and Figure 55 on page 30 for dimensions.

FIGURE 3: MFK SINGLE PIN OUT (EXCEPT 28S)

Dotted line outlines flanged package option.

See Figure 54 on page 29 and Figure 56 on page 31 for dimensions.

FIGURE 4: MFK DUAL PIN OUT (INCLUDES 28S)

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

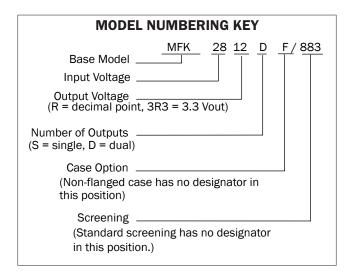


FIGURE 5: MODEL NUMBERING KEY

SMD NUMBERS									
STANDARD MICROCIRCUIT DRAWING (SMD)	MFK SIMILAR PART								
5962-1421010HXC	MFK281R8S/883								
5962-1421011HXC	MFK282R5S/883								
5962-1421012HXC	MFK283R3S/883								
5962-1421013HXC	MFK2805S/883								
5962-1421018HXC	MFK285R2S/883								
5962-1421014HXC	MFK285R7S/883								
5962-1421015HXC	MFK2812S/883								
5962-1421016HXC	MFK2815S/883								
5962-1421017HTC	MFK2828S/883								
5962-1421109HXC	MFK2805D/883								
5962-1421110HXC	MFK2807D/883								
5962-1421111HXC	MFK2812D/883								
5962-1421112HXC	MFK2815D/883								
SMD numbers shown are for screenir case (X), standard pin seal and non-s For other options please refer to the S and the vendor similar number. All SM the SMD in the "Bulletin" which is the For exact specifications for an SMD p	older dipped pins (C). SMD for the SMD number AD numbers are listed on a last page of the SMD.								

SMDs can be downloaded from https://landandmaritimeapps. dla.mil/programs/smcr

TABLE 3: SMD CROSS REFERENCE

MODEL NUMBER OPTIONS To determine the model number enter one option from EACH CATEGORY IN THE FORM BELOW.											
CATEGORY	Base Model and Input Voltage	Output Voltage ¹	Number of Outputs ²	Case Options ³	Screening ⁴						
		1R8, 2R5, 3R3, 05	S	(non-flanged, leave blank)	(standard, leave blank)						
OPTIONS	MFK28	5R2, 5R7, 12, 15, 28		F (flanged)	ES						
OPTIONS	WIFN20				883						
		05, 07, 12, 15	D								
FILL IN FOR MODEL # ⁵	MFK28				/						

Notes

1. Output Voltage: An R indicates a decimal point. 1R8 is 1.8 volts out. The values of 1.8, 2.5, 3.3 and 5.7 volts are only available in single output models.

2. Number of Outputs: S is a single output and D is a dual output.

3. Case Options: For the standard case, Figure 53 on page 28 or Figure 54 on page 29, leave the case option blank. For the flanged case option, Figure 55 on page 30 or Figure 56 on page 31, insert the letter F in the Case Option position.

4. Screening: For standard screening leave the screening option blank. For other screening options, insert the desired screening level. For more information see Table 14 on page 32.

5. If ordering by model number add a "-Q" to request solder dipped leads (MFK2805S/883-Q).

TABLE 4: MODEL NUMBER OPTIONS

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

MFK SERIES		A	LL MODE	ELS	
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
LEAD SOLDERING TEMPERATURE ¹	10 SECONDS MAX.	- 1	-	300	°C
STORAGE TEMPERATURE ¹		-65	-	+150	°C
CASE OPERATING	FULL POWER	-55	-	+125	°C
TEMPERATURE	ABSOLUTE ¹	-55	-	+135	C
DERATING OUTPUT POWER/CURRENT ¹	LINEARLY	From 1	L00% at 1	25°C to C	0% at 135°C
ESD RATING ^{1, 2}	MIL-STD-883, METHOD 3015	0)00 - 399	0.2	v
MIL-PRF-38534, 3.9.5.8.2	CLASS 2		00 - 399	92	v
ISOLATION: INPUT TO OUTPUT, INPUT TO		100			Magabasa
CASE, OUTPUT TO CASE ³	500 VDC AT 25 °C	100	-	-	Megohms
UNDERVOLTAGE LOCKOUT		-	15	_	V
CURRENT LIMIT ⁴	% OF FULL LOAD	- I	125	_	%
AUDIO REJECTION ¹		I –	50	_	dB
SWITCHING FREQUENCY	-55°C TO +125°C	430	-	570	kHz
SYNCHRONIZATION	INPUT FREQUENCY	450	-	550	kHz
	DUTY CYCLE ¹	40	-	60	%
	ACTIVE LOW	-	-	0.8	v
	ACTIVE HIGH ¹	4.5	-	5.0	v
	REFERENCED TO		INPU	т соммо	N
	IF NOT USED		LEAVE U	INCONNEC	TED
INHIBIT ACTIVE LOW (OUTPUT DISABLED)	INHIBIT PIN PULLED LOW ⁵	- 1	-	0.8	V
Do not apply a voltage to the inhibit pin ⁶	INHIBIT PIN SOURCE			4	
	CURRENT ¹		-	4	mA
	REFERENCED TO		INPU	т соммо	N
INHIBIT ACTIVE HIGH (OUTPUT ENABLED)	INHIBIT PIN CONDITION		OPEN C	OLLECTOF	R OR
Do not apply a voltage to the inhibit pin $^{\rm 6}$			UNC	ONNECTEI	C
	OPEN PIN VOLTAGE ¹	8.5	-	12	V

For mean time between failures (MTBF) contact Applications Engineering at powerapps@craneae.com

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. Passes 2000 volts.

3. When testing isolation, input pins are tied together and output pins are tied together. They are tested against each other and against case. Discharge the pins before and after testing.

4. Current limit is defined as the point at which the output voltage drops by 1%. Dual outputs: The over-current limit will trigger when the sum of the currents from both outputs reaches 125% (typical value) of the maximum rated "total" current of both outputs.

5. Tested with inhibit pin connected to input common.

6. An external inhibit interface should be used to pull the inhibit low or leave it floating. The inhibit pin can be left unconnected if not used.

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

SINGLE OUTPUT MODELS		М	FK281R	8S	м	FK282R	5S	М	FK283R	3S	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		1.74	1.80	1.86	2.42	2.50	2.58	3.20	3.30	3.40	V
OUTPUT CURRENT ²	V _{IN} = 16 TO 50	_	_	5.56	_	_	5.0	_	_	4.55	A
OUTPUT POWER ²	V _{IN} = 16 TO 50	_	_	10	_	_	12.5	_	_	15	W
OUTPUT RIPPLE	$T_{\rm C} = 25 ^{\circ} \rm C$	_	30	60	_	30	60	_	25	60	
10 kHz - 20 MHz	T _C = -55°C TO +125°C	_	35	80	_	35	80	_	30	80	mV p-p
LINE REGULATION	V _{IN} = 16 TO 50	_	5	20	_	5	20	_	5	20	mV
LOAD REGULATION	NO LOAD TO FULL	-	10	25	-	5	25	_	5	25	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	16	28	50	16	28	50	
NO LOAD TO FULL	TRANSIENT ^{1, 3}	-	-	80	-	-	80	_	_	80	V
INPUT CURRENT	NO LOAD	_	25	50	_	25	50	_	25	50	
	INHIBITED	_	2.5	4	_	2.5	4	_	2.5	4	mA
INPUT RIPPLE CURRENT	10 kHz - 20 MHz	_	30	75	_	30	80	_	30	80	mA p-p
EFFICIENCY	TC = 25°C	69	72	-	73	76	-	76	79	_	0/
	TC = -55°C TO +125°C	67	-	-	71	-	-	74	-	-	%
LOAD FAULT ^{4, 5}	POWER DISSIPATION	_	_	8.5	_	-	8.5	_	_	8.5	W
SHORT CIRCUIT	RECOVERY 1	_	_	20	_	-	20	_	_	20	ms
STEP LOAD RESPONSE 6, 7	TRANSIENT	-	±125	±200	-	±125	±200	-	±125	±200	mV pk
50% - 100% - 50%	RECOVERY	_	200	400	_	100	300	_	200	300	μs
STEP LINE RESPONSE 1, 6, 8	TRANSIENT	_	_	±350	_	_	±350	_	_	±350	mV pk
V _{IN} = 16 - 50 - 16	RECOVERY	_	0.5	1	_	0.5	1	_	0.5	1	ms
START-UP 6, 9	DELAY	-	_	25	_	_	25	_	_	25	ms
FULL LOAD	OVERSHOOT ¹	_	-	50	_	-	50	_	-	50	mV pk
CAPACITIVE LOAD 1	NO EFFECT ON DC			2000			2000			2000	
T _C = 25°C	PERFORMANCE	_	-	2000	_	_	2000	_	-	2000	μF

TABLE 6: ELECTRICAL CHARACTERISTICS -55°C TO +125°C CASE, 28 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

- 1. Guaranteed by characterization test and/or analysis. Not a production test.
- 2. At loads <20% of full load, higher input ripple current is possible.
- 3. The converters provide 80 volt transient protection per MIL-STD-704A.

4. Short circuit measured with 1% 10 milliohm resistive load.

5. Indefinite short circuit protection not guaranteed above 125°C case.

6. Recovery and start-up times are measured from application of the transient or change in condition to the point at which V_{OUT} is within 1% of final value. 7. Step load test is performed at 10 microseconds typical.

8. Step line test is performed at 100 microseconds \pm 20 microseconds.

9. Tested on release from inhibit.

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

SINGLE OUTPUT MODELS		N	IFK2805	5S	M	FK285R	2S	M	FK285R	7S	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		4.85	5.00	5.15	5.05	5.2	5.35	5.52	5.70	5.87	V
OUTPUT CURRENT ²	V _{IN} = 16 TO 50	-	-	4.0	-	_	4	-	-	4.0	A
OUTPUT POWER ²	V _{IN} = 16 TO 50	-	-	20	-	_	20.8	_	_	22.8	W
OUTPUT RIPPLE	$T_{\rm C} = 25 ^{\circ}{\rm C}$	_	40	80	-	40	80	_	40	80	mV p-p
10 kHz - 20 MHz	T _C = -55°C TO +125°C	-	-	100	-	_	100	_	_	100	mv p-p
LINE REGULATION	V _{IN} = 16 TO 50	_	5	20	-	5	20	_	5	20	mV
LOAD REGULATION	NO LOAD TO FULL	_	5	25	-	5	25	_	5	25	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	16	28	50	16	28	50	V
NO LOAD TO FULL	TRANSIENT ^{1, 3}	_	-	80	-	_	80	_	_	80	v
INPUT CURRENT	NO LOAD	_	25	50	-	25	50	_	25	50	mA
	INHIBITED	_	2.4	4	_	2.4	4	_	2.4	4	ПА
INPUT RIPPLE CURRENT	10 kHz - 20 MHz	_	23	85	-	23	85	_	25	85	mA p-p
EFFICIENCY	$T_{\rm C} = 25 ^{\circ}{\rm C}$	79	82	-	79	82	-	79	82	-	%
	T _C = -55°C TO +125°C	77	-	-	77	_	-	77	_	-	20
LOAD FAULT ^{4, 5}	POWER DISSIPATION	_	6	8.5	-	6	8.5	_	6	8.5	W
SHORT CIRCUIT	RECOVERY 1	_	-	20	-	_	20	_	_	20	ms
STEP LOAD RESPONSE 6, 7	TRANSIENT	-	-	±400	-	_	±400	_	_	±400	mV pk
50% - 100% - 50%	RECOVERY	_	-	300	-	_	300	_	_	300	μs
STEP LINE RESPONSE 1, 6, 8	TRANSIENT	_	-	±500	-	_	±500	_	_	±570	mV pk
V _{IN} = 16 - 50 - 16	RECOVERY	_	0.5	1	-	0.5	1	_	0.5	1	ms
START-UP 6, 9	DELAY	_	-	25	_	_	25	_	_	25	ms
FULL LOAD	OVERSHOOT ¹	_	0	50	_	0	50	_	0	50	mV pk
CAPACITIVE LOAD 1	NO EFFECT ON DC			2000			2000			2000	μF
$T_{\rm C} = 25 ^{\circ} \rm C$	PERFORMANCE		-	2000	_	_	2000	_	_	2000	

TABLE 7: ELECTRICAL CHARACTERISTICS -55°C TO +125°C CASE, 28 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. At loads <20% of full load, higher input ripple current is possible.

3. The converters provide 80 volt transient protection per MIL-STD-704A.

4. Short circuit measured with 1% 10 milliohm resistive load.

5. Indefinite short circuit protection not guaranteed above $125\,^\circ\text{C}$ case.

6. Recovery and start-up times are measured from application of the transient or change in condition to the point at which V_{0UT} is within 1% of final value. 7. Step load test is performed at 10 microseconds typical. 8. Step line test is performed at 100 microseconds ± 20 microseconds.

9. Tested on release from inhibit.

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

SINGLE OUTPUT MODELS		r	MFK281	2S	N	1FK281	5S	n N	/IFK2828	8S	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		11.76	12.00	12.24	14.70	15.00	15.30	27.16	28.00	28.84	V
OUTPUT CURRENT ²	V _{IN} = 16 TO 50	-	_	2.08	-	_	1.67	-	-	0.89	A
OUTPUT POWER ²	V _{IN} = 16 TO 50	- 1	-	25	_	_	25	-	-	25	W
OUTPUT RIPPLE	$T_{\rm C} = 25 ^{\circ}{\rm C}$	-	35	80	_	40	80	_	80	150	mV p-p
10 kHz - 20 MHz	T _C = -55°C TO +125°C	-	_	100	-	50	100	_	100	200	шур-р
LINE REGULATION	V _{IN} = 16 TO 50	-	5	20	_	5	20	_	150	280	mV
LOAD REGULATION	NO LOAD TO FULL	- 1	5	20	_	5	20	-	150	280	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	16	28	50	16	28	50	v
NO LOAD TO FULL	TRANSIENT ^{1, 3}	-	_	80	-	_	80	_	-	80	v
INPUT CURRENT	NO LOAD	-	20	50	_	20	50	_	30	55	mA
	INHIBITED	-	2.5	4	_	2.5	4	_	2.5	4	IIIA
INPUT RIPPLE CURRENT	10 kHz - 20 MHz	- 1	45	90	_	50	110	-	50	100	mA p-p
EFFICIENCY	$T_{\rm C} = 25 ^{\circ} \rm C$	83	86	-	84	87	-	81	84	-	%
	T _C = -55°C TO +125°C	81	_	_	82	_	-	80	-	-	70
LOAD FAULT ^{4, 5}	POWER DISSIPATION	-	6	8.5	-	6	8	-	6	8.5	W
SHORT CIRCUIT	RECOVERY 1	-	_	20	-	_	20	-	-	20	ms
STEP LOAD RESPONSE 6, 7	TRANSIENT	- 1	±350	±500	_	±400	±600	-	±900	±1200	mV pk
50% - 100% - 50%	RECOVERY	-	300	500	-	300	500	_	500	600	μs
STEP LINE RESPONSE 1, 6, 8	TRANSIENT	-	_	±1300	_	_	±1500	_	-	±2800	mV pk
V _{IN} = 16 - 50 - 16	RECOVERY	- 1	0.5	1	_	0.5	1	-	0.5	1	ms
START-UP 6, 9	DELAY	-	_	25	_	_	25	_	-	25	ms
FULL LOAD	OVERSHOOT ¹	-	0	120	-	0	150	_	0	280	mV pk
CAPACITIVE LOAD 1	NO EFFECT ON DC			2000	_	_	2000	_	_	1000	иF
$T_{\rm C} = 25 ^{\circ} ^{\rm C}$	PERFORMANCE		_	2000		-	2000		_	1000	μг

TABLE 8: ELECTRICAL CHARACTERISTICS -55°C TO +125°C CASE, 28 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

- 1. Guaranteed by characterization test and/or analysis. Not a production test.
- 2. At loads <20% of full load, higher input ripple current is possible.
- 3. The converters provide 80 volt transient protection per MIL-STD-704A.
- 4. Short circuit measured with 1% 10 milliohm resistive load.
- 5. Indefinite short circuit protection not guaranteed above 125°C case.
- 6. Recovery and start-up times are measured from application of the transient or change in condition to the point at which V_{OUT} is within 1% of final value.
- 7. Step load test is performed at 10 microseconds typical.
- 8. Step line test is performed at 100 microseconds \pm 20 microseconds.
- 9. Tested on release from inhibit.

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

DUAL OUTPUT MODELS		N	1FK2805	5D	N			
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	+ V _{OUT}	4.85	5.00	5.15	6.86	7.00	7.14	v
	- V _{OUT}	4.82	5.00	5.18	6.83	7.00	7.17	v
OUTPUT CURRENT ^{2, 3}	EITHER OUTPUT	-	±2.0	2.80	-	±1.5	2.10	
V _{IN} = 16 TO 50	TOTAL OUTPUT	-	-	4.0	_	_	3.0	A
OUTPUT POWER ^{2, 3}	EITHER OUTPUT	-	±10	14	_	±10.5	14.7	w
V _{IN} = 16 TO 50	TOTAL OUTPUT	-	-	20	_	_	21	vv
OUTPUT RIPPLE	T _C = 25 °C	-	-	80	-	_	70	m)/ n n
±V _{OUT} , 10 kHz - 20 MHz	T _C = -55°C TO +125°C	-	-	90	-	-	80	mV p-p
END OF LIFE ^{14, 15}	EOL = -55°C TO +125°C	-	-	155	-	-	135	
LINE REGULATION	+ V _{OUT}	-	5	20	-	5	20	mV
V _{IN} = 16 TO 50	- V _{OUT}	-	20	100	-	20	100	IIIV
LOAD REGULATION	+ V _{OUT}	-	5	20	-	5	20	mV
NL TO FULL, BALANCED	- V _{OUT}	-	35	250	-	50	250	IIIV
CROSS REGULATION ⁴	T _C = 25 °C	-	-	360	-	_	400	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	16	28	50	v
	TRANSIENT ^{1, 5}	-	-	80	-	_	80	v
INPUT CURRENT	NO LOAD	-	30	50	-	30	50	mA
	INHIBITED	-	2.5	4	-	2.5	4	IIIA
INPUT RIPPLE CURRENT	10 kHz - 20 MHz	-	35	70	-	35	70	mA p-p
EFFICIENCY	T _C = 25°C	78	81	-	81	83	-	%
	T _C = -55°C TO +125°C	76	-	-	79	_	-	70
LOAD FAULT ^{6, 7}	POWER DISSIPATION	-	6	8.5	_	6	8	W
SHORT CIRCUIT	RECOVERY ¹	-	15	20	_	15	20	ms
STEP LOAD RESPONSE 8, 9, 10	TRANSIENT ±V _{OUT}	-	±100	±450	-	±125	±500	mV pk
50%-100%-50%, BALANCED LOADS	RECOVERY	-	200	500	_	200	500	μs
STEP LINE RESPONSE ^{1, 8, 11}	TRANSIENT	-	-	±500	_	_	±700	mV pk
$V_{IN} = 16 - 50 - 16, \pm V_{OUT},$	RECOVERY	-	0.5	1	-	0.5	1	ms
START-UP ^{8, 12}	DELAY	-	-	20	_	-	20	ms
	OVERSHOOT ¹	-	0	50	_	0	70	mV pk
CAPACITIVE LOAD 1, 13	NO EFFECT ON DC			1000			1000	
$T_{\rm C} = 25 ^{\circ}{\rm C}$	PERFORMANCE		-	1000		_	1000	μF

TABLE 9: ELECTRICAL CHARACTERISTICS -55°C TO +125°C CASE, 28 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. Up to 70% of the total output power is available from either output providing the

- 4. Effect on –Vout for the following conditions:
- +Po = 30% to 70%; Po = 70% to 30%
- 5. The converters provide 80 volt transient protection per MIL-STD-704A.
- 6. Short circuit measured with 1% 10 milliohm resistive load.

8. Recovery and start-up times are measured from application of the transient or change in condition to the point at which V_{OUT} is within 1% of final value.

9. Response of either output with the opposite output held at half of the total output power.

10. Step load test is performed at 10 microseconds typical.

11. Step line test is performed at 100 microseconds ± 20 microseconds.

12. Tested on release from inhibit.

- 13. Each output.
- 14. End of Life performance meets standard datasheet limits unless specific EOL limits are given for a parameter.
- 15. End of Life limits are not tested during production. These values are determined by worst case analysis and includes aging.

opposite output is simultaneously carrying 30% of the total output power. 3. At loads <20% of full load, higher input ripple current is possible (sum of both outputs).

^{7.} Indefinite short circuit protection not guaranteed above $125\,^\circ\text{C}$ case.

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

DUAL OUTPUT MODELS		N	1FK2812	D	N	IFK2815	D	
PARAMETER	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	+ V _{OUT}	11.76	12.00	12.24	14.70	15.00	15.30	v
	- V _{OUT}	11.70	12.00	12.30	14.63	15.00	15.38	V
OUTPUT CURRENT ^{2, 3}	EITHER OUTPUT	—	±1.04	1.45	_	±0.833	1.16	
V _{IN} = 16 TO 50	TOTAL OUTPUT	_	_	2.08	_	_	1.66	A
OUTPUT POWER ^{2, 3}	EITHER OUTPUT	-	±12.5	17.5	_	±12.5	17.5	w
V _{IN} = 16 TO 50	TOTAL OUTPUT	_	_	25	_	_	25	vv
OUTPUT RIPPLE	$T_{\rm C} = 25 ^{\circ} \rm C$	-	-	90	_	-	90	mV p-p
±V _{OUT} , 10 kHz - 20 MHz	T _C = -55°C TO +125°C	-	-	90	-	-	90	mv p-p
END OF LIFE ^{14, 15}	EOL= -55°C TO +125°C	-	-	200	-	-	200	
LINE REGULATION	+ V _{OUT}	-	5	20	-	5	20	mV
V _{IN} = 16 TO 50	- V _{OUT}	-	20	150	_	20	150	IIIV
LOAD REGULATION	+ V _{OUT}	-	5	20	-	5	20	mV
NL TO FULL, BALANCED	- V _{OUT}	-	60	250	-	100	250	IIIV
CROSS REGULATION ⁴	$T_{\rm C} = 25 ^{\circ} \rm C$	-	-	700	_	-	800	mV
INPUT VOLTAGE	CONTINUOUS	16	28	50	16	28	50	v
	TRANSIENT ^{1, 5}	-	-	80	_	-	80	, v
INPUT CURRENT	NO LOAD	-	30	50	-	30	50	mA
	INHIBITED	_	2.5	4	-	2.5	4	
INPUT RIPPLE CURRENT	10 kHz - 20 MHz	-	50	100	-	40	100	mA p-p
EFFICIENCY	T _C = 25°C	82	85	_	83	86	_	
	T _C = -55°C TO +125°C	80	_	-	81	-	_	%
LOAD FAULT ^{6, 7}	POWER DISSIPATION	_	5	8	_	5	8	w
SHORT CIRCUIT	RECOVERY ¹	_	15	20	_	15	20	ms
STEP LOAD RESPONSE 8, 9, 10	TRANSIENT ±V _{OUT}	-	±350	±600	-	±400	±650	mV pk
50%-100%-50%, BALANCED LOADS	RECOVERY	_	250	550	-	250	550	μs
STEP LINE RESPONSE ^{1, 8, 11}	TRANSIENT	_	-	±1300	-	_	±1500	mV pk
$V_{IN} = 16 - 50 - 16, \pm V_{OUT}$,	RECOVERY	-	0.5	1	-	0.5	1	ms
START-UP ^{8, 12}	DELAY	_	-	20	-	-	20	ms
	OVERSHOOT ¹	-	0	120	-	0	150	mV pk
CAPACITIVE LOAD ^{1, 13}	NO EFFECT ON DC			1000			1000	
$T_{C} = 25 \circ C$	PERFORMANCE		-	1000	-	-	1000	μF

TABLE 10: ELECTRICAL CHARACTERISTICS -55°C TO +125°C CASE, 28 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test. 2. Up to 70% of the total output power is available from either output providing the

opposite output is simultaneously carrying 30% of the total output power. 3. At loads <20% of full load, higher input ripple current is possible (sum of both

outputs).

4. Effect on –Vout for the following conditions:

+Po = 30% to 70%; - Po = 70% to 30%

5. The converters provide 80 volt transient protection per MIL-STD-704A.

6. Short circuit measured with 1% 10 milliohm resistive load.
7. Indefinite short circuit protection not guaranteed above 125°C case.

8. Recovery and start-up times are measured from application of the transient or $% \label{eq:coverse}$

change in condition to the point at which V_{OUT} is within 1% of final value. $C_L = 0$. 9. Response of either output with the opposite output held at half of the total output power.

10. Step load test is performed at 10 microseconds typical.

11. Step line test is performed at 100 microseconds \pm 20 microseconds.

12. Tested on release from inhibit.

13. Each output.

14. End of Life performance meets standard datasheet limits unless specific EOL limits are given for a parameter.

15. End of Life limits are not tested during production. These values are determinded by worst case analysis and includes aging.

Page 11 of 32 MFK Rev AT - 2024.04.01

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

TABLE 11: OPERATING CONDITIONS,	ALL MODELS, 25°C CASE, 42 VIN,	, 100% LOAD, UNLESS OTHERWISE SPECIFIED.
---------------------------------	--------------------------------	--

MFK SERIES		A	ll mode	ELS			
PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS		
LEAD SOLDERING TEMPERATURE ¹	10 SECONDS MAX.	-	_	300	°C		
STORAGE TEMPERATURE ¹		-65	-	+150	°C		
CASE OPERATING	FULL POWER	-55	-	+125	°C		
TEMPERATURE	ABSOLUTE ¹	-55	-	+135			
DERATING OUTPUT POWER/CURRENT ¹	LINEARLY	From 1	From 100% at 125°C to 0				
ESD RATING ^{1, 2}	MIL-STD-883, METHOD 3015		200 200	0.2	v		
MIL-PRF-38534, 3.9.5.8.2	CLASS 2	20	2000 - 3999 ²				
ISOLATION: INPUT TO OUTPUT, INPUT TO		100			Martahara		
CASE, OUTPUT TO CASE ³	500 VDC AT 25°C	100	_	_	Megohms		
UNDERVOLTAGE LOCKOUT		-	15	-	V		
CURRENT LIMIT ⁴	% OF FULL LOAD	-	125	_	%		
AUDIO REJECTION ¹			50	_	dB		
SWITCHING FREQUENCY	-55°C TO +125°C	430	_	570	kHz		
SYNCHRONIZATION	INPUT FREQUENCY	450	_	550	kHz		
	DUTY CYCLE 1	40	_	60	%		
	ACTIVE LOW		_	0.8	v		
	ACTIVE HIGH ¹	4.5	_	5.0	V		
	REFERENCED TO		INPUT COMMON				
	IF NOT USED		LEAVE UNCONNECTED				
INHIBIT ACTIVE LOW (OUTPUT DISABLED)	INHIBIT PIN PULLED LOW 5	-	-	0.8	V		
Do not apply a voltage to the inhibit pin $^{\rm 6}$	INHIBIT PIN SOURCE			4			
	CURRENT ¹			4	mA		
	REFERENCED TO		INPUT COMMON				
HIBIT ACTIVE HIGH (OUTPUT ENABLED) INHIBIT PIN CONDITION			OPEN COLLECTOR OR				
Do not apply a voltage to the inhibit pin $^{\rm 6}$			UNCONNECTED				
	OPEN PIN VOLTAGE ¹	8.5	_	12	V		

For mean time between failures (MTBF) contact Applications Engineering at powerapps@craneae.com

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. Passes 2000 volts.

3. When testing isolation, input pins are tied together and output pins are tied together. They are tested against each other and against case. Discharge the pins before and after testing.

4. Current limit is defined as the point at which the output voltage drops by 1%. Dual outputs: The over-current limit will trigger when the sum of the currents from both outputs reaches 125% (typical value) of the maximum rated "total" current of both outputs.

5. Tested with inhibit pin connected to input common.

6. An external inhibit interface should be used to pull the inhibit low or leave it floating. The inhibit pin can be left unconnected if not used.

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

SINGLE OUTPUT MODELS		N	1FK2805	is	N	1FK2812	S	N	IFK2815	is	
PARAMETER ¹	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE		4.85	5.00	5.15	11.76	12.00	12.24	14.70	15.00	15.30	V
OUTPUT CURRENT ²	V _{IN} = 16 TO 50	_	_	4.0	_	-	2.08	_	_	1.67	A
OUTPUT POWER ²	V _{IN} = 16 TO 50	_	_	20	_	_	25	_	_	25	W
OUTPUT RIPPLE	T _C = 25°C	_	52	80	_	50	80	_	47	80	mV p-p
10 kHz - 20 MHz	T _C = -55°C TO +125°C	_	59	100	_	64	100	_	55	100	шур-р
LINE REGULATION	V _{IN} = 16 TO 50	-	5	20	-	5	20	_	5	20	mV
LOAD REGULATION	NO LOAD TO FULL	_	6	25	_	5	20	_	5	20	mV
INPUT VOLTAGE	CONTINUOUS	16	42	50	16	42	50	16	42	50	v
NO LOAD TO FULL	TRANSIENT ^{1, 3}	_	_	80	_	_	80	_	_	80	V V
INPUT CURRENT	NO LOAD	_	20	50	_	16	50	_	15	50	
	INHIBITED	-	2.7	4	-	2.7	4	_	3.0	4	mA
INPUT RIPPLE CURRENT	10 kHz - 20 MHz	_	25	105	_	30	110	_	35	120	mA p-p
EFFICIENCY	$T_{\rm C} = 25^{\circ}{\rm C}$	78	81	_	82	85	_	83	86	_	%
	T _C = -55°C TO +125°C	76	—	_	80	_	_	81	_	_	70
LOAD FAULT ^{4, 5}	POWER DISSIPATION	_	7	8.5	_	7	8.5	_	7	8	W
SHORT CIRCUIT	RECOVERY	_	—	20	_	_	20	_	_	20	ms
STEP LOAD RESPONSE 6, 7	TRANSIENT	_	±110	±400	_	±320	±500	_	±375	±600	mV pk
50% - 100% - 50%	RECOVERY	_	205	300	_	250	500	_	240	500	μs
STEP LINE RESPONSE 6, 8	TRANSIENT	_	_	±500	_	_	±1300	_	_	±1500	mV pk
V _{IN} = 16 - 50 - 16	RECOVERY	_	0.5	1	_	0.5	1	_	0.5	1	ms
START-UP 6, 9	DELAY	-	_	25	-	-	25	_	_	25	ms
FULL LOAD	OVERSHOOT	_	0	50	_	0	120	_	0	150	mV pk
CAPACITIVE LOAD	NO EFFECT ON DC			2000			2000			2000	μF
$T_{C} = 25 \circ C$	PERFORMANCE	_	_	2000	_	-	2000	-	_	2000	μг

TABLE 12: ELECTRICAL CHARACTERISTICS -55°C TO +125°C CASE, 42 VIN, 100% LOAD, UNLESS OTHERWISE SPECIFIED.

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test.

2. At loads <20% of full load, higher input ripple current is possible.

3. The converters provide 80 volt transient protection per MIL-STD-704A.

4. Short circuit measured with 1% 10 milliohm resistive load.

5. Indefinite short circuit protection not guaranteed above 125°C case.

6. Recovery and start-up times are measured from application of the transient or change in condition to the point at which V_{OUT} is within 1% of final value. $C_L = 0$.

7. Step load test is performed at 10 microseconds typical.

8. Step line test is performed at 100 microseconds \pm 20 microseconds.

9. Tested on release from inhibit.

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

DUAL OUTPUT MODELS	AL OUTPUT MODELS MFK2812D		MFK2815D					
PARAMETER ¹	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
OUTPUT VOLTAGE	+ V _{OUT}	11.76	12.00	12.24	14.70	15.00	15.30	v
	- V _{OUT}	11.70	12.00	12.30	14.63	15.00	15.38	v
OUTPUT CURRENT ^{2, 3}	EITHER OUTPUT	-	±1.04	1.45	-	±0.833	1.16	Α
V _{IN} = 16 TO 50	TOTAL OUTPUT	-	-	2.08	-	-	1.66	
OUTPUT POWER ^{2, 3}	EITHER OUTPUT	_	±12.5	17.5	_	±12.5	17.5	w
V _{IN} = 16 TO 50	TOTAL OUTPUT	-	-	25	_	-	25	~~~
OUTPUT RIPPLE	$T_{\rm C} = 25 ^{\circ} \rm C$	-	-	90	-	-	90	mV p-p
±V _{OUT} , 10 kHz - 20 MHz	T _C = -55°C TO +125°C	-	-	90	_	-	90	шир-р
END OF LIFE ^{14, 15}	EOL = -55°C TO +125°C	-	-	200	_	-	200	
LINE REGULATION	+ V _{OUT}	_	5	20	_	5	20	mV
V _{IN} = 16 TO 50 V	- V _{OUT}	_	20	150	_	20	150	IIIV
LOAD REGULATION	+ V _{OUT}	-	5	20	_	5	20	mV
NL TO FULL, BALANCED	- V _{OUT}	-	20	250	-	60	250	IIIV
CROSS REGULATION ⁴	$T_{\rm C} = 25 ^{\circ} \rm C$	-	-	700	_	-	800	mV
INPUT VOLTAGE	CONTINUOUS	16	42	50	16	42	50	V
	TRANSIENT ^{1, 5}	-	-	80	_	-	80	v
INPUT CURRENT	NO LOAD	-	22	50	-	25	50	mA
	INHIBITED	-	2.8	4	_	2.8	4	IIIA
INPUT RIPPLE CURRENT	10 kHz - 20 MHz	-	30	120	-	35	120	mA p-p
EFFICIENCY	$T_{\rm C} = 25 ^{\circ}{\rm C}$	81	84	—	82	85	—	%
	T _C = -55°C TO +125°C	79	-	_	80	-	-	70
LOAD FAULT ^{6.7}	POWER DISSIPATION	-	7.5	8.5	-	7.5	8.5	W
SHORT CIRCUIT	RECOVERY	-	15	20	-	15	20	ms
STEP LOAD RESPONSE 8, 9, 10	TRANSIENT +V _{OUT}	-	±320	±600	_	±365	±650	mV pk
50%-100%-50%, BALANCED LOADS	RECOVERY	-	240	550	-	250	550	μs
STEP LINE RESPONSE 8, 11	TRANSIENT	-	-	±1300	_	-	±1500	mV pk
V _{IN} = 16 - 50 - 16, ±V _{OUT}	RECOVERY	-	0.5	1	_	0.5	1	ms
START-UP ^{8, 12}	DELAY	-	-	20	_	-	20	ms
	OVERSHOOT	-	0	120	_	0	150	mV pk
CAPACITIVE LOAD 13 T _C = 25 °C	NO EFFECT ON DC PERFORMANCE	_	_	1000	_	_	1000	μF

Notes

1. Guaranteed by characterization test and/or analysis. Not a production test. 2. Up to 70% of the total output power is available from either output providing the

opposite output is simultaneously carrying 30% of the total output power. 3. At loads <20% of full load, higher input ripple current is possible (sum of both

outputs). 4. Effect on -Vout for the following conditions:

+Po = 30% to 70%; - Po = 70% to 30%

5. The converters provide 80 volt transient protection per MIL-STD-704A. 6. Short circuit measured with 1% 10 milliohm resistive load.

7. Indefinite short circuit protection not guaranteed above 125°C case.

8. Recovery and start-up times are measured from application of the transient or

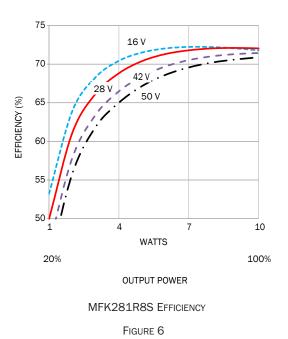
change in condition to the point at which V_{OUT} is within 1% of final value. C_L = 0. 9. Response of either output with the opposite output held at half of the total output power.

10. Step load test is performed at 10 microseconds typical.

11. Step line test is performed at 100 microseconds ± 20 microseconds.

12. Tested on release from inhibit.

13. Each output.


14. End of Life performance meets standard datasheet limits unless specific EOL limits are given for a parameter.

15. End of Life limits are not tested during production. These values are determinded by worst case analysis and includes aging.

Page 14 of 32 MFK Rev AT - 2024.04.01

42 volt specifications are for reference only and are not guaranteed.

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

Typical Performance Plots: 25 °C case, 28 Vin, 100% load, unless otherwise specified. For reference only, not guaranteed specifications.

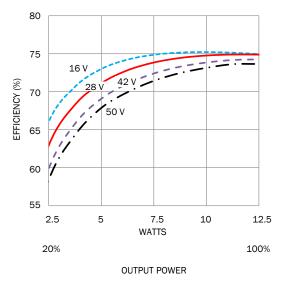
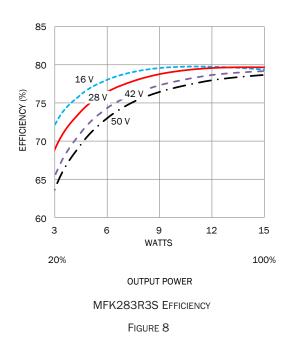
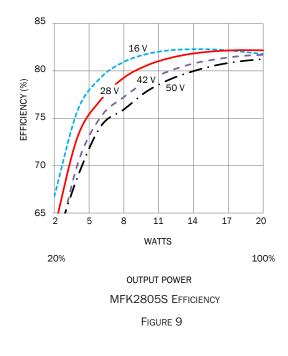
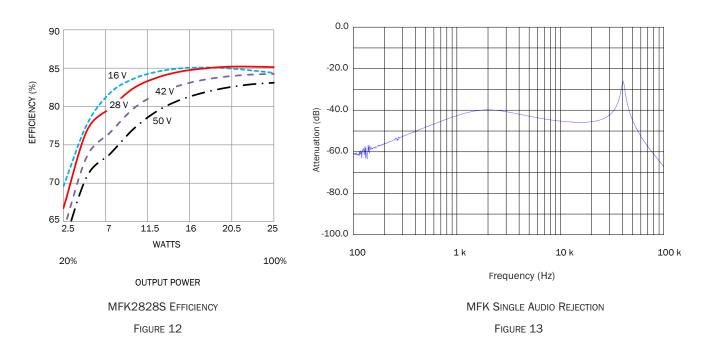
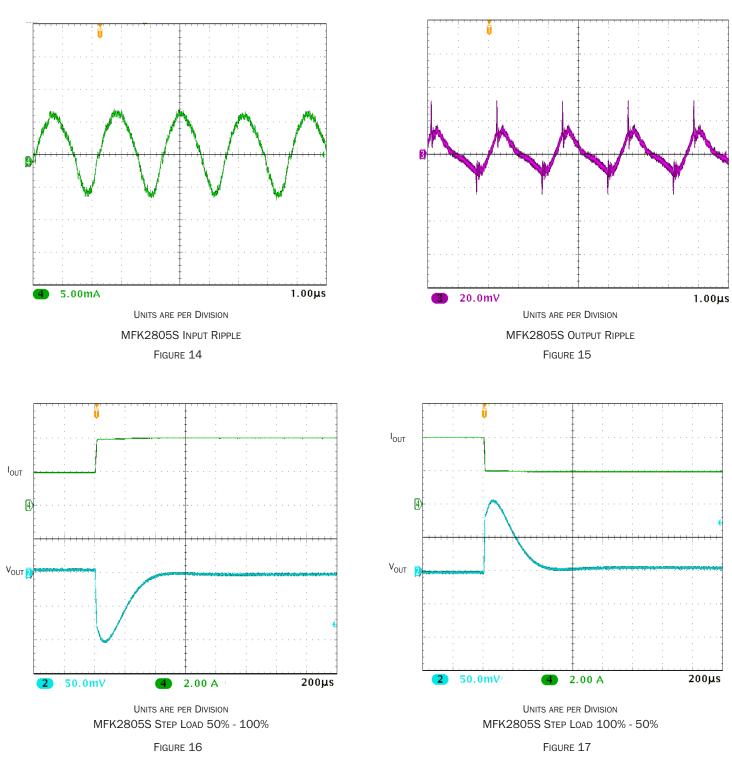
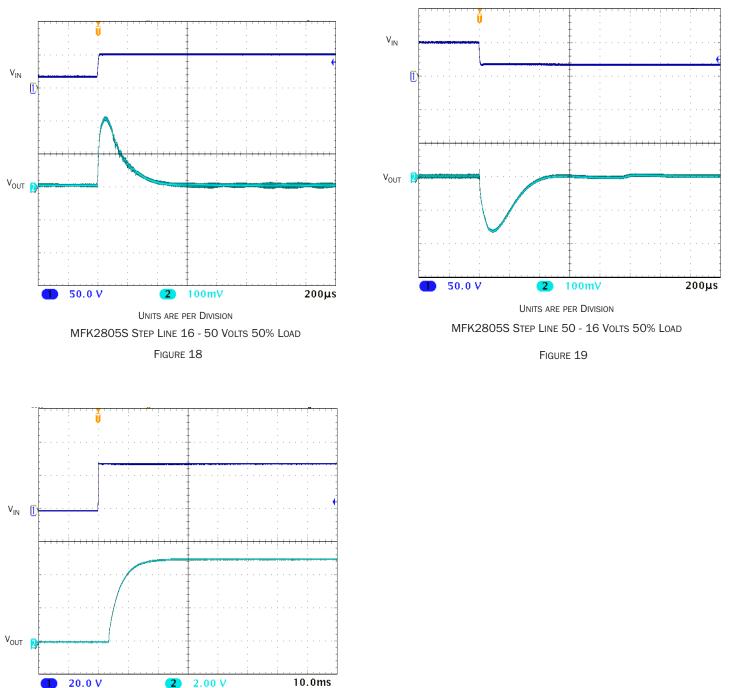




FIGURE 7




16 TO 50 VOLTS INPUT - 10 TO 25 WATT

Typical Performance Plots: 25 °C case, 28 Vin, 100% load, unless otherwise specified. For reference only, not guaranteed specifications.



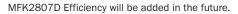
16 TO 50 VOLTS INPUT - 10 TO 25 WATT

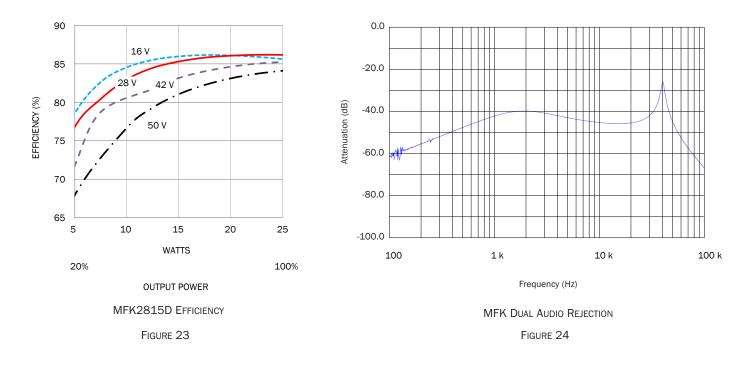
 $\label{eq:typical performance Plots: 25 °C case, 28 Vin, 100\% \ \mbox{load, unless otherwise specified.} \\ For reference only, not guaranteed specifications. \\$

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

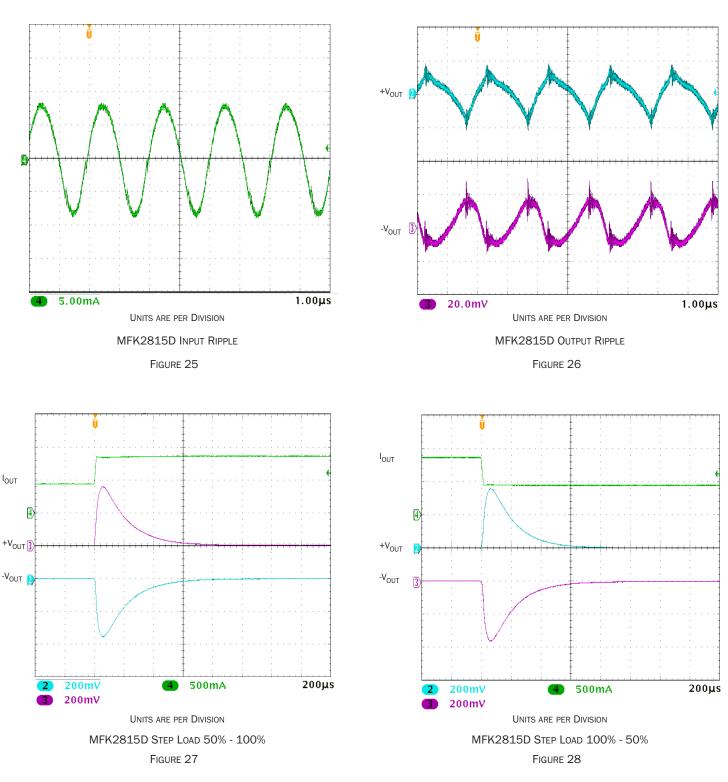


Typical Performance Plots: 25 °C case, 28 Vin, 100% load, unless otherwise specified. For reference only, not guaranteed specifications.


UNITS ARE PER DIVISION MFK2805S START-UP FULL LOAD


FIGURE 20

16 TO 50 VOLTS INPUT - 10 TO 25 WATT



 $\label{eq:typical performance Plots: 25 °C case, 28 Vin, 100\% \ \mbox{load, unless otherwise specified.} \\ For reference only, not guaranteed specifications.$

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

Typical Performance Plots: 25 °C case, 28 Vin, 100% load, unless otherwise specified. For reference only, not guaranteed specifications.

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

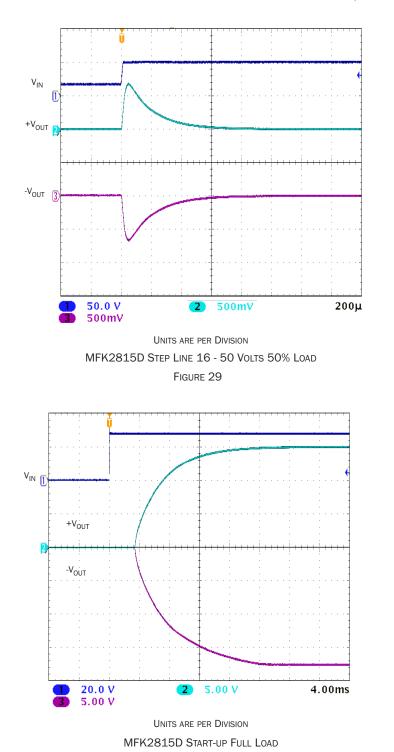
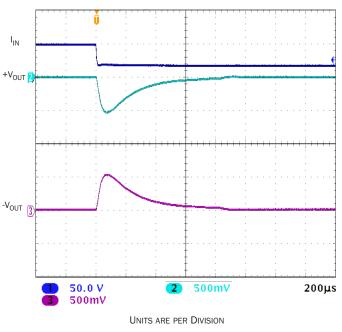
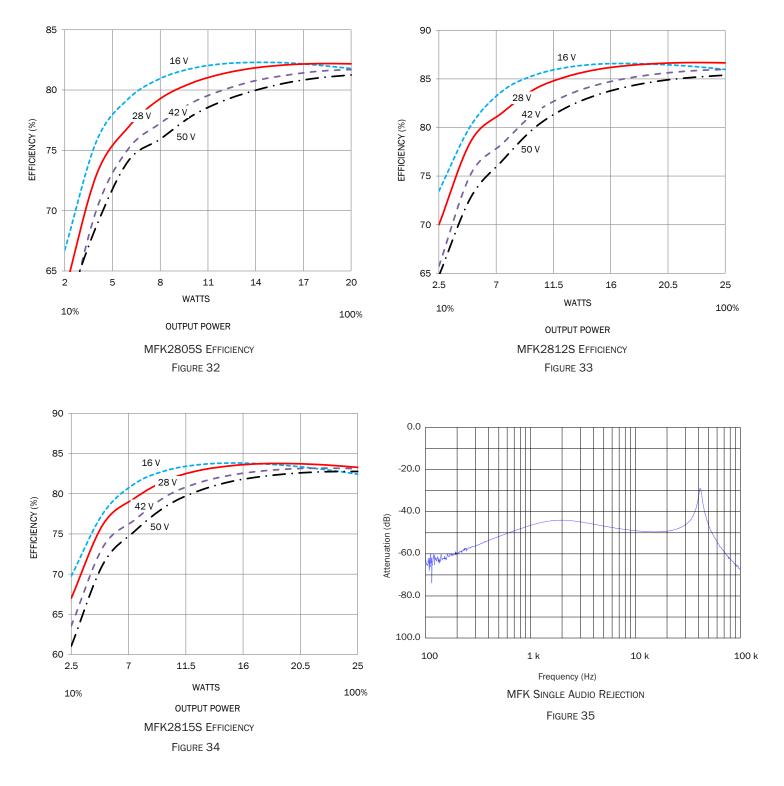



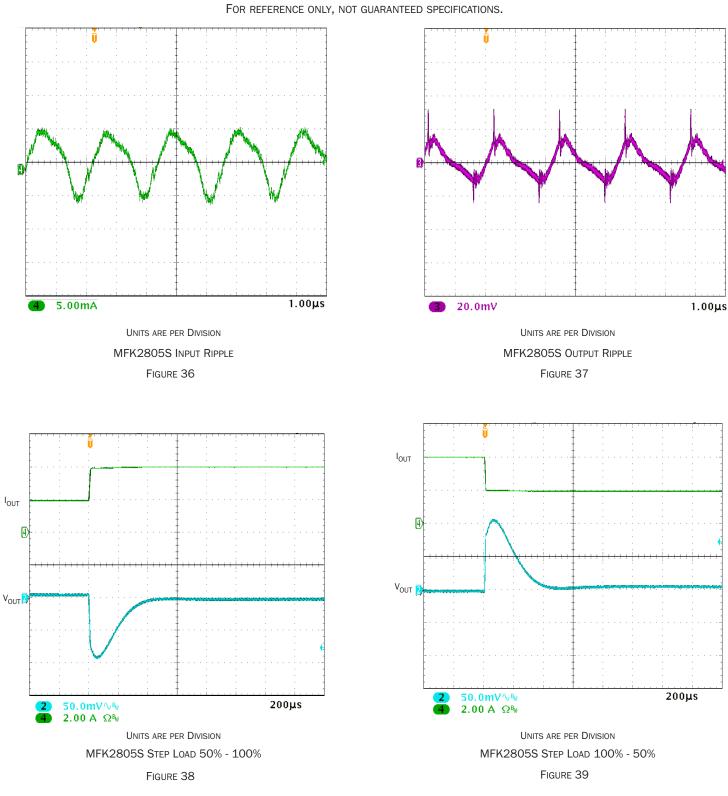
FIGURE 31

Typical Performance Plots: 25 °C case, 28 Vin, 100% load, unless otherwise specified. For reference only, not guaranteed specifications.

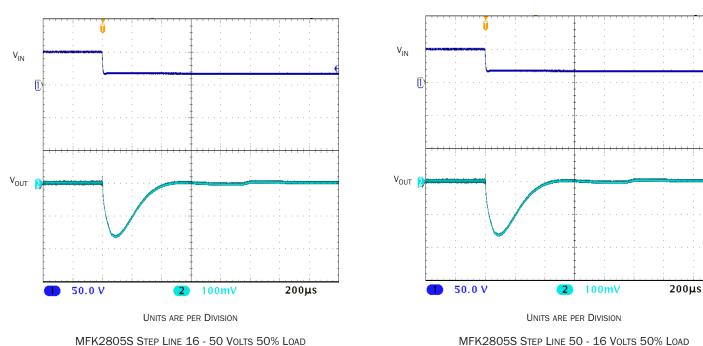

www.craneae.com/interpoint



MFK2815D STEP LINE 50 - 16 VOLTS 50% LOAD

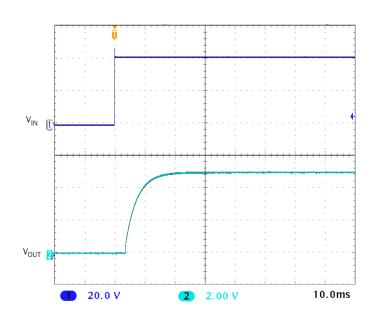

FIGURE 30

16 TO 50 VOLTS INPUT - 10 TO 25 WATT



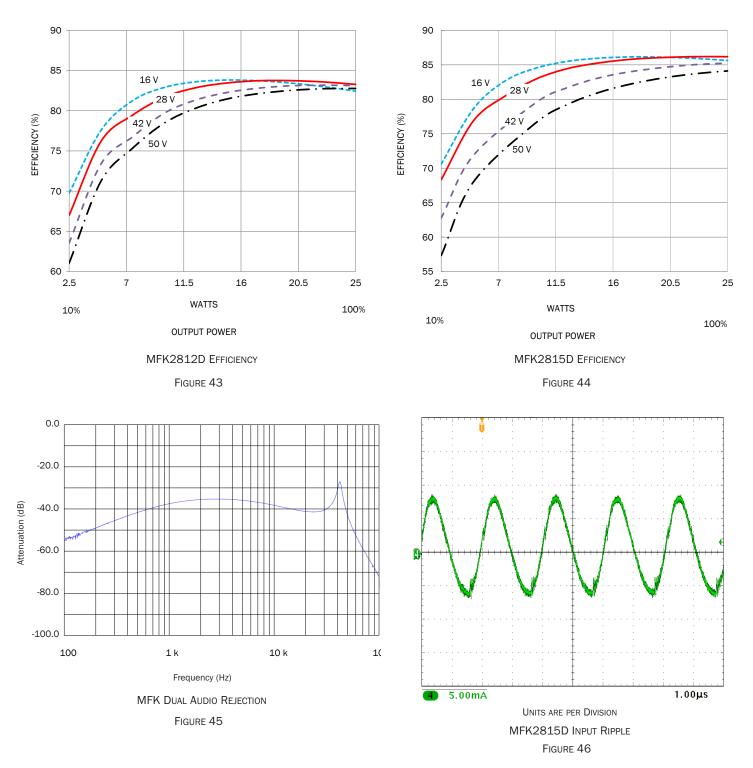
16 TO 50 VOLTS INPUT - 10 TO 25 WATT

Typical Performance Plots: 25 °C case, 42 Vin, 100% load, unless otherwise specified. For reference only, not guaranteed specifications.

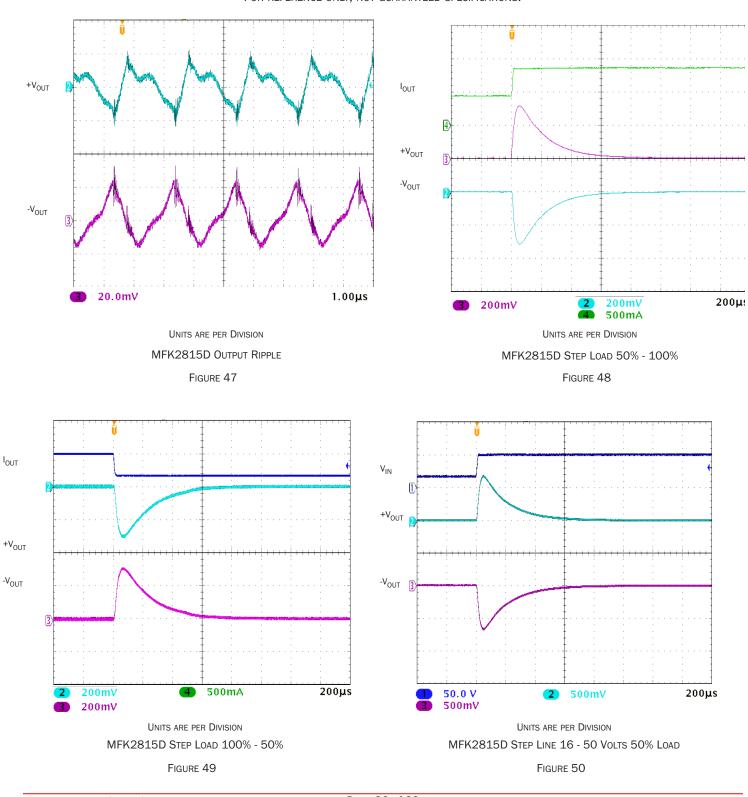

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

Typical Performance Plots: 25 °C case, 42 Vin, 100% load, unless otherwise specified. For reference only, not guaranteed specifications.

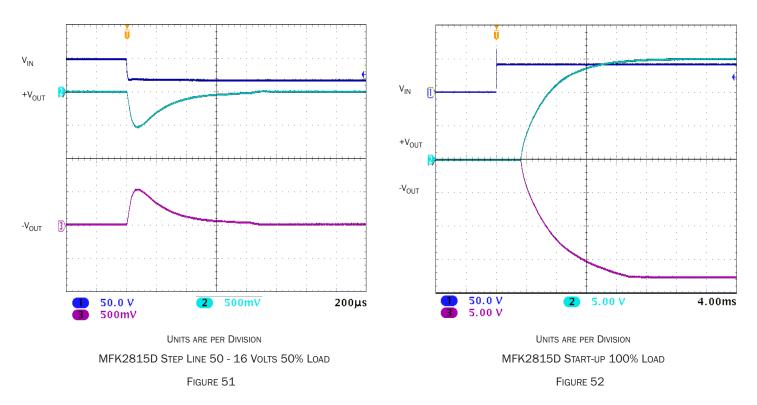
FIGURE 41


UNITS ARE PER DIVISION

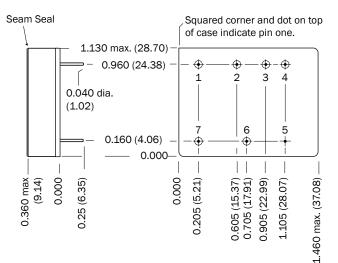
MFK2805S START-UP FULL LOAD



16 TO 50 VOLTS INPUT - 10 TO 25 WATT


16 TO 50 VOLTS INPUT - 10 TO 25 WATT

Typical Performance Plots: 25 °C case, 42 Vin, 100% load, unless otherwise specified. For reference only, not guaranteed specifications.


www.craneae.com/interpoint

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

Typical Performance Plots: 25 °C case, 42 Vin, 100% load, unless otherwise specified. For reference only, not guaranteed specifications.

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

BOTTOM VIEW MFK SINGLE

Weight: 38 grams maximum

Case dimensions in inches (mm)

 $\begin{array}{ll} \mbox{Tolerance} & \pm 0.005 \ (0.13) \mbox{ for three decimal places} \\ \pm 0.01 \ (0.3) \mbox{ for two decimal places} \\ & \mbox{ unless otherwise specified} \end{array}$

CAUTION

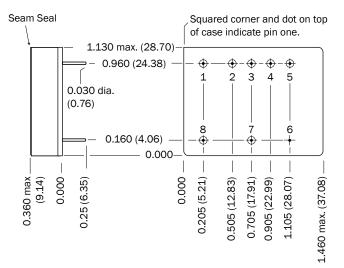
Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300 °C for 10 seconds per pin.

Materials

 Header
 Cold Rolled Steel/Nickel/Gold

 Cover
 Kovar/Nickel

 Pins
 #52 alloy/Gold ceramic seal


 Gold plating of 50 - 150 microinches included in pin diameter

 Seal Hole: 0.123 ±0.002 (3.12 ±0.05)

Please refer to the numerical dimensions for accuracy.

FIGURE 53: MFK SINGLE OUTPUT EXCEPT 28 VOLT SINGLE

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

BOTTOM VIEW MFK DUAL

Weight: 38 grams maximum

Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding $300\,^\circ$ C for 10 seconds per pin.

Materials

 Header
 Cold Rolled Steel/Nickel/Gold

 Cover
 Kovar/Nickel

 Pins
 #52 alloy/Gold ceramic seal

 Gold plating of 50 - 150 microinches included in pin diameter

 Seal Hole: 0.091 ±0.002 (2.31 ±0.05)

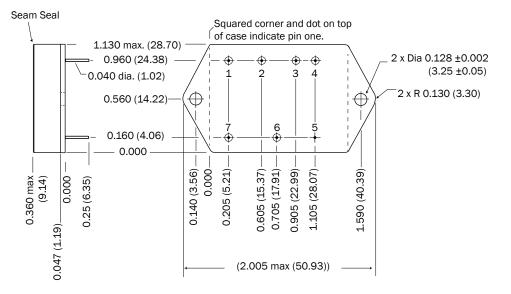

Please refer to the numerical dimensions for accuracy.

FIGURE 54: MFK DUAL OUTPUT INCLUDES 28 VOLT SINGLE

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

BOTTOM VIEW MFK SINGLE FLANGED

Flanged cases: Designator "F" required in Case Option position of model number

Weight: 38 grams maximum

Case dimensions in inches (mm) Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

 Header
 Cold Rolled Steel/Nickel/Gold

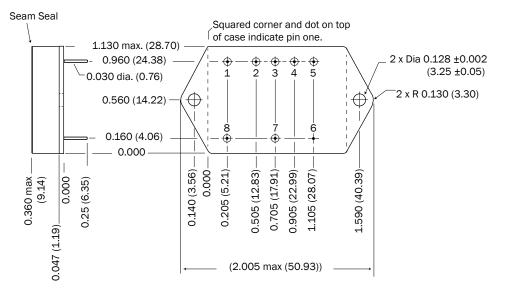
 Cover
 Kovar/Nickel

 Pins
 #52 alloy/Gold compression glass seal

 Gold plating of 50 - 150 microinches included in pin diameter

 Seal Hole:
 0.123 ±0.002 (3.12 ±0.05)

Please refer to the numerical dimensions for accuracy.


FIGURE 55: MFK SINGLE OUTPUT FLANGED

EXCEPT 28 VOLT SINGLE

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

BOTTOM VIEW MFK DUAL FLANGED

Flanged cases: Designator "F" required in Case Option position of model number

Weight: 38 grams maximum

Case dimensions in inches (mm)

Tolerance ±0.005 (0.13) for three decimal places ±0.01 (0.3) for two decimal places unless otherwise specified

CAUTION

Heat from reflow or wave soldering may damage the device. Solder pins individually with heat application not exceeding 300°C for 10 seconds per pin.

Materials

Header	Cold Rolled Steel/Nickel/Gold
Cover	Kovar/Nickel
Pins	#52 alloy/Gold compression glass seal
	Gold plating of 50 - 150 microinches included in pin diameter
	Seal Hole: 0.091 ±0.002 (2.31 ±0.05)

Please refer to the numerical dimensions for accuracy.

FIGURE 56: MFK DUAL OUTPUT FLANGED

INCLUDES 28 VOLT SINGLE

16 TO 50 VOLTS INPUT - 10 TO 25 WATT

ELEMENT EVALUATION TABLES FOR QML PRODUCTS ARE IN "APP-009 QUALITY AND CERTIFICATION", APPENDIX A, IN COMPLIANCE WITH MIL-PRF-38534 REVISION L. (LINK HTTPS://WWW.CRANEAE.COM/QUALITY-ASSURANCE-MODULAR-POWER)

Environmental Screening High Reliability Standard, /ES, and /883 (Class H)

	NON-QML ¹		CLASS H QML ^{2, 3}
TEST PERFORMED	STANDARD	/ES	/883
Pre-cap Inspection, Method 2017, 2032			
Temperature Cycle (10 times)			
Method 1010, Cond. C, -65°C to +150°C, ambient			
Method 1010, Cond. B, -55°C to +125°C, ambient			
Constant Acceleration			
Method 2001, 3000 g			
Method 2001, 500 g			
PIND, Test Method 2020, Cond. A			■ 4
Burn-in Method 1015, +125°C case, typical ⁵			
96 hours			
160 hours			
Final Electrical Test, MIL-PRF-38534, Group A,			
Subgroups 1 through 6, -55°C, +25°C, +125°C case			
Subgroups 1 and 4, +25°C case			
Hermeticity Test, Method 1014			
Gross Leak, Cond. C ₁ , fluorocarbon			
Fine Leak, Cond. A ₂ , helium			
Gross Leak, Dip			
Final visual inspection, Method 2009			

Test methods are referenced to MIL-STD-883 as determined by MIL-PRF-38534.

Notes

1. Non-QML products may not meet all of the requirements of MIL-PRF-38534.

2. All processes are QML qualified and performed by certified operators.

 A QML products which has an SMD number is marked "QML". A QML product which does not have an SMD number is marked per MIL-PRF-38534 table III.

4. Not required by DLA but performed to assure product quality.

5. Burn-in temperature designed to bring the case temperature to +125 °C minimum. Burn-in is a powered test.

TABLE 14: ENVIRONMENTAL SCREENING HIGH RELIABILITY STANDARD, /ES, AND /883 (CLASS H)

